RECONSTRUCTIVE

Management of Surgical Incisions Using Incisional Negative-Pressure Therapy

Kathryn A. Schlosser, MD Javier Otero, MD Amy Lincourt, PhD Vedra A. Augenstein, MD

Charlotte, N.C.

Summary: Use of negative-pressure therapy (NPT) is a well-established therapy for chronic, open, contaminated wounds, promoting formation of granulation tissue and healing. The application of NPT after primary closure (ie, incisional NPT) has also been shown to reduce surgical site infection and surgical site occurrence in high-risk procedures across multiple disciplines. Incisional NPT is believed to decrease edema and shear stress, promote angiogenesis and lymphatic drainage, and increase vascular flow and scar formation. Incisional NPT may be considered when there is a high risk of surgical site occurrence or surgical site infection, particularly in procedures with nonautologous implants, such as hernia mesh or other permanent prosthetics. Here we discuss the proposed physiologic mechanism as demonstrated in animal models and review clinical outcomes across multiple specialties. (*Plast. Reconstr. Surg.* 143: 15S, 2019.)

he economic and human impact of surgical site infection (SSI) and surgical site occurrence (SSO) is well established. SSIs account for the highest proportion of hospital-acquired infections, doubling length of stay and increasing readmission rates.¹⁻⁵ An SSI costs approximately \$20,000 per patient, with a loss in profit of \$2.2 million annually per hospital, and costs US healthcare \$1.6–3.6 billion annually. 1,2,4 Complexity, contamination, or patient comorbidities increase risk of SSI or SSO.5 SSIs occur in up to 16% of sternotomies, 19% of revisional joint operations, 29% of open colorectal procedures, and 30% of vascular groin procedures. 6-9 SSOs develop in 29%-66% of abdominal wall reconstruction cases. 10-12 National guidelines and implementation of the Surgical Care Improvement Protocol sought to decrease the incidence of SSI. 13,14 However, these protocols do not address incisional care, leaving a compelling target for high-risk patients and procedures.

Surgical incisions are traditionally dressed in dry sterile gauze to wick exudate and provide a mechanical barrier to contaminants. Saturation of such dressings promotes tissue breakdown, biofilm formation, and subsequent bacterial colonization and infection.^{15,16} Ideal surgical dressings

From the Division of Gastrointestinal and Minimally Invasive Surgery, Department of Surgery, Carolinas Medical Center.

Received for publication June 20, 2018; accepted October 4, 2018.

Copyright © 2018 by the American Society of Plastic Surgeons

DOI: 10.1097/PRS.0000000000005307

would control moisture and mechanically shield from environmental contamination. ¹⁶

Negative-pressure therapy (NPT) was first developed to promote healthy granulation tissue in chronic and contaminated open wounds.¹⁷ Incisional NPT (iNPT) has since been adopted as a dressing after primary wound closure. This article will discuss the proposed physiologic mechanism, review published clinical outcomes, and suggest clinical applications of iNPT. All cited values have P < 0.0.5 unless otherwise stated. For methods regarding literature review, please **see Document**, Supplemental Digital Content 1, which shows the methods and literature review, http://links.lww. com/PRS/D186; Table, Supplemental Digital Content 2, which shows the clinical trials, http://links. lww.com/PRS/D187; Table, Supplemental Digital Content 3, which shows the preclinical studies, http://links.lww.com/PRS/D188; and Table,

Disclosure: Dr. Augenstein is a speaker for Allergan, KCI, and WL Gore. The remaining authors have no financial disclosures to report.

Supplemental digital content is available for this article. Direct URL citations appear in the text; simply type the URL address into any Web browser to access this content. Clickable links to the material are provided in the HTML text of this article on the *Journal*'s website (www. PRSJournal.com).

Supplemental Digital Content 4, which shows the meta-analyses, literature reviews, and cost analyses, *http://links.lww.com/PRS/D189*.

BASICS OF INPT

History

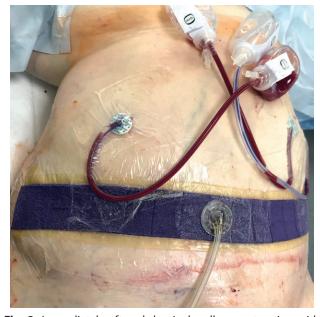
The application of NPT to open surgical wounds was first described in 1997 in a porcine model with full thickness wounds,¹⁷ and a large series of 300 open wounds described decreased edema and induration, improved granulation tissue, and successful flap or skin graft closure.¹⁸ Multiple subsequent clinical trials established the utility of NPT for open and/or contaminated wounds.

With NPT well established, Stannard et al¹⁹ published 2 prospective randomized trials in 2006 on prophylactic iNPT after primary closure of high-risk orthopedic procedures. First, iNPT shortened drainage time with no difference in wound dehiscence or infection. Then, iNPT decreased SSI from 28% to 5% when applied to high-energy open fractures.²⁰ As described below, multiple studies have since examined the laboratory parameters, clinical outcomes, and cost-efficacy of iNPT.

NPT Systems

Most NPT systems have 4 components:

- 1. Foam sponge cut to the size of the open wound
- 2. Nonpermeable adhesive drape covering the sponge and surrounding skin
- 3. Noncollapsible tube attached through the adhesive drape to the sponge
- 4. Vacuum pump generating pressure between -50 and -200 mm Hg


Modification of this system for iNPT adds a permeable barrier between the foam sponge and a closed incision, protecting the skin from irritation by direct contact with the sponge. A narrow strip of sponge is placed on the permeable barrier, along the surgical incision. The rest of the system is applied as above (Figs. 1–3).

Mechanism of Action and Laboratory Studies

Laboratory and clinical studies have investigated NPT mechanisms of action in porcine models in open wounds. Explicit mechanisms have not been studied in humans. NPT is hypothesized to improve angiogenesis, local vascular flow and

Fig. 1. Patient with large, symptomatic ventral incisional hernia and loss of domain, presenting for repair after 30 lbs weight loss.

Fig. 2. Immediately after abdominal wall reconstruction with panniculectomy, component separation, preperitoneal mesh placement. Postoperative application of incisional negative-pressure wound therapy. Patient also has two 19-French closed suction drains: 1 between fascia and mesh and 1 in the subcutaneous space.

lymphatic drainage, to contract wound edges, and to reduce lateral stress. This is associated with decreased bacterial contamination and SSI,^{6,15,17} promotion of stronger scar formation,^{21,22} and shortened healing time.^{19,23}

On an open wound, NPT decreases microvascular flow 0.5 cm from the wound edge and increases flow at 2.5 cm.^{24–27} Wound edges show hypoxia when under wet-to-dry or NPT dressings, but angiogenesis at a NPT-treated wound edge shows more organized and functional

Fig. 3. Fourteen days postoperatively, after staple removal.

angiogenesis.^{26,28} The impact of NPT on blood flow and angiogenesis when applied to closed wounds has not been as thoroughly investigated. However, increased perfusion with iNPT has been demonstrated in using indocyanine green fluorescence angiography when applied after complex abdominal wall reconstruction.²⁹

iNPT is believed to improve lymphatic drainage, as demonstrated by improved clearance of nanosphere markers to lymph nodes in pigs after creation of subcutaneous flaps with primary closure. Dymphatic drainage causes decreased edema and seroma formation, improved clearance of infectious agents, and better healing. Indeed, ultrasound revealed decreased hematoma and seroma formation associated with iNPT in this model. Compared to dry sterile dressing, use of iNPT was also associated with decreased inflammatory markers. Compared to dry sterile dressing, use of iNPT was also associated with decreased inflammatory markers.

Finally, the application of iNPT is believed to alleviate lateral wound tension. Wilkes et al³¹ described decrease of lateral forces and alignment of wound edges using 2-dimensional and 3-dimensional modeling, and iNPT resulted in a 43%–51% increase in distraction forces required to stretch the tissue 10 mm across an incision in a silicone model.^{31,32} Healed incisions treated with iNPT in a porcine model are stronger under mechanical strain and show narrower scars on histologic examination.^{21,22} This has not been studied in humans.

CLINICAL TRIALS OF INPT

Efficacy of iNPT has been demonstrated in multiple high-risk procedures including vascular, cardiothoracic, obstetric, general, colorectal, plastic, and orthopedic surgery. Patients undergoing abdominal wall reconstruction with components separation and panniculectomy had lower SSO with iNPT (22% versus 63%) and reduced skin dehiscence (9% versus 39%).³³ One study suggests lower recurrence rate at 14 months follow-up (3% versus 25%),³⁴ whereas others show decreases in wound complication and dehiscence.^{35,36} Results vary, as Pauli et al³⁷ did not find a significant difference in infection when iNPT was applied in patients undergoing contaminated open ventral hernia repair.

Application of iNPT decreases SSO and SSI in high-risk abdominal procedures. Blackham et al³⁸ described decreased incidence of SSI (26.4% versus 16.3%) and skin dehiscence (27.6% versus 16.3%) after laparotomy when compared with lower risk patients without iNPT. Other studies have shown iNPT associated with significantly lower SSO (12.5% versus 29.3%), after open colorectal procedures, lower-than-expected incidence of SSI in comorbid patients after laparotomy for gynecologic malignancy, and decreased postoperative length of stay after laparotomy (6.1 versus 14.7 days). 8,39-41 After abdominoperineal resection, perineal placement of iNPT decreased SSI [odds ratio (OR), 0.11] but increased length of stay (11 versus 8 days). 42 In pancreaticoduodenectomy, use of iNPT halved postoperative SSIs (OR, 0.45).43

Mastectomy and breast reconstruction may benefit from iNPT, with decreases in SSO and flap necrosis demonstrated. 41,44 Galiano et al45 applied iNPT and gauze dressing to contralateral breasts after reduction mammoplasty and demonstrated decreased rates of "healing complications" (56.8 versus 61.8%) and dehiscence (16.2 versus 24.6%) with iNPT-treated breasts.

Multiple poststernotomy studies have demonstrated decreased SSI and improved skin perfusion in this high-risk population. Horspectively randomized high-risk sternotomy patients, the iNPT group showed a lower SSI rate (4% versus 16%) and fewer bacteria on wound swab (1 versus 10 Gram-positive cultures). In vascular groin incisions, iNPT is associated with significantly lower SSI (6% versus 30%), despite more surgically complex patients, and similar findings have been noted in other high-risk vascular patients.

Ultrasound examination has shown decreased size and incidence of postoperative seroma with iNPT after orthopedic surgery (18% versus 80% after hemiarthroplasty and 40% versus 90% after total hip arthroplasty).^{52,53} Similar findings have been demonstrated after neurosurgical intervention.^{54,55} iNPT decreased duration of drainage and

need for surgical intervention after hip arthroplasty, implying an association of seromas with decreased wound healing.^{19,56} After inguinal lymphadenectomy, Tauber et al⁵⁷ demonstrated an association of iNPT with multiple endpoints, including lymphoceles (20% versus 62%), lymphorrhoea (7% versus 45%), lymphedema (0 versus 46%), and reintervention (7 versus 23%).

META-ANALYSIS OF INPT

Multiple meta-analyses have examined the impact of iNPT after various surgical interventions. A meta-analysis of 5 ventral hernia repair studies showed that iNPT significantly decreased SSI (11.8% versus 27.0%), wound dehiscence (4.3% versus 19.7%), and hernia recurrence (2.4%)versus 10.1%).⁵⁸ In a meta-analysis of 14 publications on abdominal, groin, extremity, and chest/ back procedures, the incidence of SSI was lower in all subgroups when iNPT was used (6.6% versus 9.4%; OR, 0.44; 95% CI, 0.32–0.59). 59 Another review of 21 studies showed benefit of iNPT, but not in all procedures.⁶⁰ Finally, a product-specific meta-analysis of 16 publications did show an absolute reduction of SSI from 9.7% to 4.8% across multiple procedure types.⁶¹

These analyses demonstrate iNPT decreasing complications after multiple high-risk procedures. Analysis is limited by variable complication rates of specific procedures, and variable indication, duration, and pressure settings of the applied therapy.

CLINICAL APPLICATION OF INPT

iNPT costs more than standard gauze dressings, with estimates ranging from \$200 to \$500 per patient. Cost-utility analyses have found iNPT to be cost-effective after procedures with high infection rate. Chopra et al⁶² described savings of \$1,546 per patient after abdominal procedures with a SSI risk greater than 16%. Similar cost-effectiveness has been demonstrated in obese patients undergoing cesarean section, particularly if iNPT would decrease SSI by at least 30%. ^{63,64}

Current literature does not specify the ideal pressure setting and duration of iNPT as specific to procedure and wound type. The definition of "high risk" varies by specialty, procedure, and publication. Dressing components and pressure settings vary, with therapy lasting from 2 to 7 days and pressure ranging from –75 to –125 mm Hg. ^{24,25,27} Cost analyses of iNPT have not accounted for associated home health cost, time, and mobility burden imposed on the patient. Finally, the devastating

long-term implications of an infected nonautologous implant such as an orthopedic joint, hernia mesh, or vascular graft are not quantified.

The application of iNPT is most appropriate for patients in whom postoperative complications have significant consequences. The 2017 International Multidisciplinary Consensus Recommendations recommend consideration of iNPT in patients at high risk for SSI and SSO as defined by patient (diabetes, age, and obesity), incision (tension, undermining, and contamination), and surgical factors (vascular and cardiovascular). Careful risk stratification and randomized studies will help further elucidate value and set guidelines for incisional management.

Vedra A. Augenstein, MD
Carolinas Medical Center
1025 Morehead Medical Drive, Suite 300
Charlotte, NC 28204
Vedra.Augenstein@atriumhealth.org
Twitter: @VedraAugenstein

REFERENCES

- Zimlichman E, Henderson D, Tamir O, et al. Health careassociated infections: a meta-analysis of costs and financial impact on the US health care system. *JAMA Intern Med.* 2013;173:2039–2046.
- Shepard J, Ward W, Milstone A, et al. Financial impact of surgical site infections on hospitals: the hospital management perspective. *JAMA Surg.* 2013;148:907–914.
- Mu Y, Edwards JR, Horan TC, et al. Improving risk-adjusted measures of surgical site infection for the national healthcare safety network. *Infect Control Hosp Epidemiol*. 2011;32:970–986.
- Magill SS, Edwards JR, Bamberg W, et al. Multistate pointprevalence survey of health care–associated infections. N Engl J Med. 2014;370:1198–1208.
- de Lissovoy G, Fraeman K, Hutchins V, et al. Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control. 2009;37:387–397.
- Grauhan O, Navasardyan A, Hofmann M, et al. Prevention of poststernotomy wound infections in obese patients by negative pressure wound therapy. J Thorac Cardiovasc Surg. 2013;145:1387–1392.
- Cooper HJ, Bas MA. Closed-incision negative-pressure therapy versus antimicrobial dressings after revision hip and knee surgery: a comparative study. J Arthroplasty. 2016;31:1047–1052.
- 8. Bonds AM, Novick TK, Dietert JB, et al. Incisional negative pressure wound therapy significantly reduces surgical site infection in open colorectal surgery. *Dis Colon Rectum*. 2013;56:1403–1408.
- Matatov T, Reddy KN, Doucet LD, et al. Experience with a new negative pressure incision management system in prevention of groin wound infection in vascular surgery patients. J Vasc Surg. 2013;57:791–795.
- 10. Mazzocchi M, Dessy LA, Ranno R, et al. "Component separation" technique and panniculectomy for repair of incisional hernia. *Am J Surg.* 2011;201:776–783.
- 11. Albright E, Diaz D, Davenport D, et al. The component separation technique for hernia repair: a comparison of open and endoscopic techniques. *Am Surg.* 2011;77:839–843. Available

- at: http://www.ncbi.nlm.nih.gov/pubmed/21944344. Accessed November 28, 2017.
- 12. Heniford BT, Bradley JF, Wormer BA, et al. Ventral and incisional hernia repair with preperitoneal mesh placement: an analysis of technique with long-term follow-up. Paper presented at: 2013 Annual Meeting of the Southern Surgical Association; December 1, 2013; Hot Springs, VA.
- Rosenberger LH, Politano AD, Sawyer RG. The surgical care improvement project and prevention of post-operative infection, including surgical site infection. Surg Infect (Larchmt). 2011;12:163–168.
- 14. Berríos-Torres SI, Umscheid CA, Bratzler DW, et al; Healthcare Infection Control Practices Advisory Committee. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. *JAMA Surg.* 2017;152:784–791.
- Singh DP, Gowda AU, Chopra K, et al. The effect of negative pressure wound therapy with antiseptic instillation on biofilm formation in a porcine model of infected spinal instrumentation. Wounds. 2017;29:175–180.
- Lawrence JC. Dressings and wound infection. Am J Surg. 1994;167:21S–24S. Available at: http://www.ncbi.nlm.nih. gov/pubmed/8109680. Accessed May 29, 2018.
- Morykwas MJ, Argenta LC, Shelton-Brown EI, et al. Vacuumassisted closure: a new method for wound control and treatment: animal studies and basic foundation. *Ann Plast Surg*. 1997;38:553–562. Available at: http://www.ncbi.nlm.nih. gov/pubmed/9188970. Accessed May 29, 2018.
- Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. *Ann Plast Surg.* 1997;38:563–576; discussion 577. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9188971. Accessed May 29, 2018.
- 19. Stannard JP, Robinson JT, Anderson ER, et al. Negative pressure wound therapy to treat hematomas and surgical incisions following high-energy trauma. *J Trauma*. 2006;60:1301–1306.
- 20. Stannard JP, Volgas DA, Stewart R, et al. Negative pressure wound therapy after severe open fractures: a prospective randomized study. *J Orthop Trauma*. 2009;23:552–557.
- 21. Glaser DA, Farnsworth CL, Varley ES, et al. Negative pressure therapy for closed spine incisions: a pilot study. *Wounds*. 2012;24:308–316. Available at: http://www.ncbi.nlm.nih. gov/pubmed/25876166. Accessed May 29, 2018.
- Kilpadi DV, Lessing C, Derrick K. Healed porcine incisions previously treated with a surgical incision management system: mechanical, histomorphometric, and gene expression properties. Aesthetic Plast Surg. 2014;38:767–778.
- 23. Suissa D, Danino A, Nikolis A. Negative-pressure therapy versus standard wound care: a meta-analysis of randomized trials. *Plast Reconstr Surg.* 2011;128:498e–503e.
- Malmsjö M, Ingemansson R, Martin R, et al. Wound edge microvascular blood flow: effects of negative pressure wound therapy using gauze or polyurethane foam. *Ann Plast Surg.* 2009;63:676–681.
- 25. Borgquist O, Ingemansson R, Malmsjö M. Wound edge microvascular blood flow during negative-pressure wound therapy: examining the effects of pressures from -10 to -175 mmHg. *Plast Reconstr Surg.* 2010;125:502–509.
- 26. Erba P, Ogawa R, Ackermann M, et al. Angiogenesis in wounds treated by microdeformational wound therapy. *Ann Surg.* 2011;253:402–409.
- 27. Wackenfors A, Gustafsson R, Sjögren J, et al. Blood flow responses in the peristernal thoracic wall during vacuum-assisted closure therapy. *Ann Thorac Surg.* 2005;79: 1724–1730; discussion 1730.

- 28. Suh H, Lee AY, Park EJ, et al. Negative pressure wound therapy on closed surgical wounds with dead space: animal study using a swine model. *Ann Plast Surg.* 2016;76:717–722.
- 29. Maddox J, Singh D. Incisional negative pressure wound therapy associated with increased wound perfusion in complex abdominal wall reconstruction: a case series. Paper presented at: 2014 All Surgeons Day; March 1, 2014, Washington, DC.
- 30. Kilpadi DV, Cunningham MR. Evaluation of closed incision management with negative pressure wound therapy (CIM): hematoma/seroma and involvement of the lymphatic system. *Wound Repair Regen.* 2011;19:588–596.
- 31. Wilkes RP, Kilpad DV, Zhao Y, et al. Closed incision management with negative pressure wound therapy (CIM): biomechanics. *Surg Innov.* 2012;19:67–75.
- 32. Loveluck J, Copeland T, Hill J, et al. Biomechanical modeling of the forces applied to closed incisions during single-use negative pressure wound therapy. *Eplasty*. 2016;16:e20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27555887. Accessed September 15, 2018.
- Condé-Green A, Chung TL, Holton LH 3rd, et al. Incisional negative-pressure wound therapy versus conventional dressings following abdominal wall reconstruction: a comparative study. *Ann Plast Surg.* 2013;71:394–397.
- 34. Gassman A, Mehta A, Bucholdz E, et al. Positive outcomes with negative pressure therapy over primarily closed large abdominal wall reconstruction reduces surgical site infection rates. *Hernia*. 2015;19:273–278.
- Rodriguez-Unda N, Soares KC, Azoury SC, et al. Negativepressure wound therapy in the management of high-grade ventral hernia repairs. J Gastrointest Surg. 2015;19:2054–2061.
- 36. de Vries FEE, Atema JJ, Lapid O, et al. Closed incision prophylactic negative pressure wound therapy in patients undergoing major complex abdominal wall repair. *Hernia*. 2017;21:583–589.
- 37. Pauli EM, Krpata DM, Novitsky YW, et al. Negative pressure therapy for high-risk abdominal wall reconstruction incisions. *Surg Infect (Larchmt)*. 2013;14:270–274.
- Blackham AU, Farrah JP, McCoy TP, et al. Prevention of surgical site infections in high-risk patients with laparotomy incisions using negative-pressure therapy. Am J Surg. 2013;205:647–654.
- Lynam S, Mark KS, Temkin SM. Primary placement of incisional negative pressure wound therapy at time of laparotomy for gynecologic malignancies. *Int J Gynecol Cancer*. 2016;26:1525–1529.
- 40. O'Leary DP, Peirce C, Anglim B, et al. Prophylactic negative pressure dressing use in closed laparotomy wounds following abdominal operations: a randomized, controlled, open-label trial: the P.I.C.O. trial. *Ann Surg.* 2017;265:1082–1086.
- Pellino G, Sciaudone G, Candilio G, et al. Preventive NPWT over closed incisions in general surgery: does age matter? *Int* J Surg. 2014;12(suppl 2):S64–S68.
- 42. Chadi SA, Kidane B, Britto K, et al. Incisional negative pressure wound therapy decreases the frequency of postoperative perineal surgical site infections: a cohort study. *Dis Colon Rectum.* 2014;57:999–1006.
- 43. Burkhart RA, Javed AA, Ronnekleiv-Kelly S, et al. The use of negative pressure wound therapy to prevent post-operative surgical site infections following pancreaticoduodenectomy. HPB (Oxford). 2017;19:825–831.
- 44. Kim DY, Park SJ, Bang SI, et al. Does the use of incisional negative-pressure wound therapy prevent mastectomy flap necrosis in immediate expander-based breast reconstruction? *Plast Reconstr Surg.* 2016;138:558–566.
- 45. Galiano RD, Hudson D, Shin J, et al. Incisional negative pressure wound therapy for prevention of wound

- healing complications following reduction mammaplasty. *Plast Reconstr Surg Glob Open.* 2018;6:e1560.
- Atkins BZ, Wooten MK, Kistler J, et al. Does negative pressure wound therapy have a role in preventing poststernotomy wound complications? Surg Innov. 2009;16:140–146.
- Atkins BZ, Tetterton JK, Petersen RP, et al. Laser Doppler flowmetry assessment of peristernal perfusion after cardiac surgery: beneficial effect of negative pressure therapy. *Int* Wound J. 2011;8:56–62.
- Grauhan O, Navasardyan A, Tutkun B, et al. Effect of surgical incision management on wound infections in a poststernotomy patient population. *Int Wound J.* 2014;11(suppl 1):6–9.
- 49. Jennings S, Vahaviolos J, Chan J, et al. Prevention of sternal wound infections by use of a surgical incision management system: first reported Australian case series. *Heart Lung Circ.* 2016;25:89–93.
- 50. Lo Torto F, Monfrecola A, Kaciulyte J, et al. Preliminary result with incisional negative pressure wound therapy and pectoralis major muscle flap for median sternotomy wound infection in a high-risk patient population. *Int Wound J.* 2017;14:1335–1339.
- 51. Masden D, Goldstein J, Endara M, et al. Negative pressure wound therapy for at-risk surgical closures in patients with multiple comorbidities: a prospective randomized controlled study. *Ann Surg.* 2012;255:1043–1047.
- 52. Pauser J, Nordmeyer M, Biber R, et al. Incisional negative pressure wound therapy after hemiarthroplasty for femoral neck fractures reduction of wound complications. *Int Wound J.* 2016;13:663–667.
- 53. Pachowsky M, Gusinde J, Klein A, et al. Negative pressure wound therapy to prevent seromas and treat surgical incisions after total hip arthroplasty. *Int Orthop.* 2012;36:719–722.
- 54. Adogwa O, Fatemi P, Perez E, et al. Negative pressure wound therapy reduces incidence of postoperative wound infection and dehiscence after long-segment thoracolumbar spinal fusion: a single institutional experience. *Spine J.* 2014;14:2911–2917.
- 55. Nordmeyer M, Pauser J, Biber R, et al. Negative pressure wound therapy for seroma prevention and surgical incision treatment in spinal fracture care. *Int Wound J.* 2016;13:1176–1179.

- Hansen E, Durinka JB, Costanzo JA, et al. Negative pressure wound therapy is associated with resolution of incisional drainage in most wounds after hip arthroplasty. *Clin Orthop Relat Res.* 2013;471:3230–3236.
- Tauber R, Schmid S, Horn T, et al. Inguinal lymph node dissection: epidermal vacuum therapy for prevention of wound complications. *J Plast Reconstr Aesthet Surg.* 2013;66:390–396.
- 58. Swanson EW, Cheng HT, Susarla SM, et al. Does negative pressure wound therapy applied to closed incisions following ventral hernia repair prevent wound complications and hernia recurrence? A systematic review and meta-analysis. *Plast Surg (Oakville, Ont).* 2016;24:113–118. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27441196. Accessed June 3, 2018.
- Semsarzadeh NN, Tadisina KK, Maddox J, et al. Closed incision negative-pressure therapy is associated with decreased surgical-site infections: a meta-analysis. *Plast Reconstr Surg.* 2015;136:592–602.
- 60. De Vries FEE, Wallert ED, Solomkin JS, et al. A systematic review and meta-analysis including GRADE qualification of the risk of surgical site infections after prophylactic negative pressure wound therapy compared with conventional dressings in clean and contaminated surgery. *Medicine (Baltimore)*. 2016;95:e4673.
- Strugala V, Martin R. Meta-analysis of comparative trials evaluating a prophylactic single-use negative pressure wound therapy system for the prevention of surgical site complications. Surg Infect (Larchmt). 2017;18:810–819.
- 62. Chopra K, Gowda AU, Morrow C, et al. The economic impact of closed-incision negative-pressure therapy in highrisk abdominal incisions: a cost-utility analysis. *Plast Reconstr* Surg. 2016;137:1284–1289.
- 63. Lewis LS, Convery PA, Bolac CS, et al. Cost of care using prophylactic negative pressure wound vacuum on closed laparotomy incisions. *Gynecol Oncol.* 2014;132:684–689.
- 64. Tuffaha HW, Gillespie BM, Chaboyer W, et al. Cost-utility analysis of negative pressure wound therapy in high-risk cesarean section wounds. *J Surg Res.* 2015;195:612–622.
- Willy C, Agarwal A, Andersen CA, et al. Closed incision negative pressure therapy: international multidisciplinary consensus recommendations. *Int Wound J.* 2017;14:385–398.