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Abstract

Silk biomaterials are known for biomedical and tissue engineering applications including drug
delivery and implantable devices owing to their biocompatible and a wide range of ideal
physico-chemical properties. Herein, we present a critical overview of the progress of silk-based
matrices in skin regeneration therapeutics with an emphasis on recent innovations and scientific
findings. Beginning with a brief description of numerous varieties of silks, the review
summarizes our current understanding of the biological properties of silk that help in the wound
healing process. Various silk varieties such as silkworm silk fibroin, silk sericin, native spider
silk and recombinant silk materials have been explored for cutaneous wound healing applications
from the past few decades. With an aim to harness the regenerative properties of silk, numerous
strategies have been applied to develop functional bioactive wound dressings and viable bio-
artificial skin grafts in recent times. The review examines multiple inherent properties of silk that
aid in the critical events of the healing process such as cell migration, cell proliferation,
angiogenesis, and re-epithelialization. A detailed insight into the progress of silk-based cellular
skin grafts is also provided that discusses various co-culture strategies and development of
bilayer and tri-layer human skin equivalent under in vitro conditions. In addition, functionalized
silk matrices loaded with bioactive molecules and antibacterial compounds are discussed, which
have shown great potential in treating hard-to-heal wounds. Finally, clinical studies performed
using silk-based translational products are reviewed that validate their regenerative properties

and future applications in this area.
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Statement of Significance

The review article discusses the recent advances in silk-based technologies for wound healing
applications, covering various types of silk biomaterials and their properties suitable for wound
repair and regeneration. The article demonstrates the progress of silk-based matrices with an
update on the patented technologies and clinical advancements over the years.

The rationale behind this review is to highlight numerous properties of silk biomaterials
that aid in all the critical events of the wound healing process towards skin regeneration.
Functionalization strategies to fabricate silk dressings containing bioactive molecules and
antimicrobial compounds for drug delivery to the wound bed are discussed. In addition, a
separate section describes the approaches taken to generate living human skin equivalent that
have recently contributed in the field of skin tissue engineering.
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1. Introduction

Silk is a protein biopolymer that is produced by a variety of insects such as silkworms, flies,
spiders, mites, and scorpions [1]. Silk produced from silkworms and spiders is extensively
studied for various biomedical applications. Silk is a broad term and often referred to as protein
fibers spun by insects; however, it varies from species to species and function to function [1-3].
Silkworms develop silk cocoons by spinning silk fibers that shelter them during their period of
metamorphism. Spiders produce silk fibers to build webs, capture preys, and for their
movements. All the varieties of silk fibers differ from species to species due to significant
changes in their amino acid sequence. Silks also vary in their physico-chemical and biological

properties owing to the variation in composition [2].

Being a versatile biopolymer, silk is widely explored in the applications of tissue
engineering and regenerative medicine [4]. Silk fibroin (SF), the fiber portion extracted from the
cocoons of silkworms. SF isolated from the domesticated silkworm, Bombyx mori, is the most
extensively studied variety of silk (Figure 1-1,11). It is well characterized in terms of physical
properties, chemical composition, and biclogical properties [5-7]. The feasibility of extracting
the fibroin component directly from silk cocoons using green technology has endorsed it as an
ideal structural biomaterial. Silk is considered as a biocompatible material because it does not
evoke a long-term or persistent inflammatory response, and it allows tissue ingrowth [7-11]. It
induces mild or minimal initial inflammatory response when implanted in vivo, which subsides
with time, indicating immunocompatible properties of the material [10]. Recently, scaffolds
made up of reconstituted or solubilized silk protein, namely Silk Voice, are given the FDA
approval for the first time in 2019 and the product is handled by Sofregen Medical, Inc. Medford
[12]. Similarly, silk-based injectable fillers were applied for vocal cord augmentation [13].
Previously, a mesh construct (with the product name SERI) was given the 510(k) clearance by

the FDA, which is fabricated from the silk fibers isolated from silkworm cocoons [14].

Apart from the fibroin component, there exists silk sericin protein in the cocoons that act
as glue while the silkworms spin silk cocoons [15, 16]. Sericin holds the fibroin fibers together
and contributes to almost 30 % weight of silk cocoon [15]. Both the fibroin and sericin
components of silkworm cocoons are individually explored for wound healing, drug delivery and

other biomedical applications [7, 15, 17]. In the context of silk biomaterials, it is worth
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mentioning that spider silk has also been explored for tissue engineering and wound healing
applications in recent times [3, 18]. In addition, there are recombinant silk varieties such as
recombinant dragline spider silk and silk-elastin-like protein (SELP), which are developed
artificially through recombinant DNA technology (RDT) [3, 19]. Technological advancements in
genetic engineering have enabled successful integration of silk specific genes and expression of
silk proteins through a range of host systems. For instance, 4RepCT partial dragline spider silk is
recombinantly produced through Escherichia coli bacteria that can be easily used to make
matrices like foam, film and mesh (Figure 1-111,1V) [20]. The 4RepCT is generated using a part
of gene taken from the natural spidroin protein from Euprosthenops australis spiders, and
comprises of four sequential repeats of poly-alanine/glycine-rich moieties and a non-repetitive
C-terminal domain. Furthermore, functionalization of such recombinantly produced silk proteins
is easy at the genetic level through RDT wherein the gene encoding a functional peptide

sequence can be fused to the silk gene [3].

Silk, being identified as a biocompatible, non-immunogenic and bioresorbable material,
has been extensively used in suturing of incisional wounds since the ancient times [1]. With the
emergence of modern medicine, silk has widely been explored for wound healing applications in
recent times [21-23]. The inherent property of silk to stimulate cell migration and proliferation
has been found to be directly linked with the accelerated wound healing properties [24].
Numerous studies have proved silk as a good choice of biomaterial for the development of
wound dressings and bioartificial skin graft [21, 22, 25, 26]. Skin, the largest organ of our body,
performs the most essential function of protecting the internal organs by providing barrier

properties towards the external environment and harmful pathogens (Figure 2) [27].

A cutaneous wound is basically a disruption in the healthy structure and function of skin
tissue that creates a cavity, which needs to be repaired and regenerated. Although skin tissue
holds self-repair property, specific types of wounds such as diabetic ulcers, burn injuries and the
large surface area or deep wounds, fail to heal [27]. Such non-healing wounds require surgical
interventions (plastic surgeries) or bioactive dressing materials that aid in the healing process.

Matrices applied in the form of wound dressings or artificial grafts provide a platform over the
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wounds, which restore the barrier properties and stimulate the self-repair mechanism of the
wound healing cascade [27-29]. In this context, silk as a biomaterial has been extensively
explored and utilized for the development of bioactive matrices for wound healing applications
[1, 4]. Silk-based matrices developed so far have shown potential in treating various types of
wounds ranging from diabetic wounds, third-degree burns, donor-site split thickness wounds,
and pressure sores in animal studies [8, 22, 30, 31]. In addition, numerous strategies have been
applied for the functionalization of silk-based matrices using growth factors, antibiotics, and

other bioactive molecules since last few years [32].

Herein, we critically review the research efforts taken using the silk-based technology for
wound healing applications. The review begins with the introduction of various types of silk
biomaterials utilized for the development of wound dressings and skin grafts. It provides an
updated overview of the intrinsic wound healing properties of silk materials, contributing to the
overall skin regeneration process. Various composite matrices with other natural and synthetic
polymers are briefly described. We have also touchied upon the functionalization strategies and
highlighted the drug delivery approaches taken using different bioactive molecules for wound
healing applications. A separate section of silk-based cellular skin substitutes and artificially
developed viable skin grafts is also included, where we have critically appraised the research
efforts concerned with skin tissue engineering. Finally, we aim to provide an insight into the
clinical studies performed using silk-based matrices along with future directions and perspectives

of the improved wound healing technology using silk biomaterials.
2. Silk biopolymers: structure and properties for wound healing applications
2.1. Silkworm siik fibroin

Among the different varieties of silkworms, based on their feeding habits, they can be classified
as: mulberry and non-mulberry silkworms [2, 33]. The host plants that give shelter and food to
the silkworms are considered behind their classification. Silkworms that feed on the mulberry
leaves are mulberry silkworms, for example Bombyx mori. Other varieties that do not feed on
mulberry leaves are categorized under non-mulberry silkworms. There are numerous non-
mulberry silkworm varieties worldwide; for instance, Antheraea mylitta (Indian Tasar
silk), Antheraea assama (Indian Muga silk), Antheraea pernyi (Chinese Oak Tussah silk),

Antheraea yamamai (Japanese silk) and Philosamia ricini (Indian Eri silk) [2, 33]. The minor or



Journal Pre-proof

major differences in the sequence of silk proteins are responsible for variations in their physical,
chemical and biological properties [33]. The B. mori silk fibroin (BmSF) include two
polypeptide chains: a heavy (H) chain of 391.367 kDa and a light (L) chain of 25 kDa [6].
Additionally, BmSF contains a glycoprotein known as P25. Assembly of H-chains, L-chains and
P25 is in the ratio of 6: 6: 1, which is also considered as a signature of BmSF protein [6]. Non-
mulberry silk fibroin (NMSF) consists of only the heavy chain, as it lacks both the L-chain and
P25 glycoprotein [2, 33]. This marks the prime difference in the composition of BmSF and
NMSF proteins. Other differences between BmSF and NMSF include presence of polyalanine
blocks, RGD (Arg-Gly-Asp) tripeptide and Arg-rich motifs in NMSF [2].

The SF protein remains in a-helix and random coil conformation in the silk glands of
silkworms, which transforms to mechanically strong silk fibers or threads during spinning [6,
34]. Stability of silk fibers at the time of construction of silk cocoons is due to the transition of
the SF protein from random coils to B-sheet conformation [6, 34]. The B-sheet structures are
majorly formed due to the presence of repetitive stretches of (GAGAGS)n and (GAGAGY)n in
the protein sequence of BmSF. Silk fiber contairis hydrophobic repetitive domains of glycine and
alanine amino acids, which contribute to more than 50 % of total fibroin and thus confer
crystallinity to the overall protein structure [1, 6]. The crystalline structures of silk are majorly
responsible for their high mechanical strength and structural properties. Differences in the
crystalline structures due to varied amino acid sequence among various silkworms also lead to
different physical properties. For instance, NMSF consists of repetitive blocks of polyalanine
(AA)n and polyglycine (GG)n, whereas BmSF consists of (GAGA)n repeats [2, 33]. The
repetitive hydrophobic domains are responsible for the B-sheet structures in silk fibers [1, 6]. Due
to the structural differences, non-mulberry silk has outperformed mulberry silk fibers in terms of
mechanical properties [35-37]. It has been found that the crystallinity of (AA)n repeats present in
NMSF is much higher and requires higher energy to break than that of (GAGA)n repeats of
BmSF [38, 39]. In a comparative study, A. assama silk showed 40 % elongation at break, which
was found to be comparable with Nephila clavipes spider silk (40 %); however, B. mori silk
showed only 15 % elongation at break [38, 40]. Another non-mulberry silk variety, A. pernyi
demonstrated stronger and tougher mechanical properties (Young’s modulus = 9633 MPa) in
comparison to B. mori fibers (Young’s modulus = 7456 MPa), which showed comparatively

weak and brittle behaviour [36].
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Variation in the protein sequence of SF varieties is also a major reason for discrepancies
in the protein dissolution methods [41]. The dissolution method of BmSF from silk cocoons is
well established using 9.3 M LiBr, as the degummed B. mori silk fibers readily dissolve in the
LiBr solution [5]. The LiBr solvent system disrupts the intermolecular hydrogen bonding of
fibroin chains, thereby dispersing the fibroin polypeptides for proper dissolution. This readily
works for B. mori silk fibers; however, this solvent fails in complete dissolution of non-mulberry
silk fibers and results in significantly lower yield [42]. It is speculated that due to the presence of
a hydrophobic core of A-motifs and excessive hydrogen bonding among the alternated
hydrophilic sequences, the NMSF fibers do not completely dissolve in the chaotropic reagent
like LiBr [42]. Therefore, researchers have resorted to an alternative method of isolating NMSF
from silk glands of mature silkworms using surfactant like sodium dodecyl sulfate [41]. This
method works for a wide variety of non-mulberry silkworms like A. mylitta, A. assama and P.
ricini [21, 43]. Conclusively, the unique polypeptides of SF and their (intra/inter)molecular
structural organizations are cumulatively responsible for different dissolution process and
various extraordinary properties. Furthermore, SF is easy to modulate in various formats by
controlling the crystallinity of B-sheet structures by physical and chemical treatments [23]. This
also provide a way to achieve desired and tunable physical properties in terms of mechanical
strength and degradation rate [23]. The details of SF properties that ultimately help in the healing

process have been extensively discussed in section 3.
2.2. Silk sericin

Silk sericin (SS), another component of the silk cocoon, is also considered as a protein
biomaterial containing inherent bioactivity, suitable for wound healing applications (Figure 3).
Sericin owns_beneficial properties for wound repair such as moisture retention ability,
biocompatibility, biodegradability, antibacterial, and antioxidant activities [15, 44, 45]. Sericin is
a glycoprotein present in silkworm cocoons that acts as a glue to hold the fibroin fibers during
the cocoon fabrication. Sericin is extracted from silk cocoons through the process of degumming
by boiling in 0.02 M sodium carbonate (Na,COs3) solution, which is the conventional extraction
process [5, 45]. Previously considered as a waste product from silk textile industries, sericin is
now considered as a potential biomaterial for tissue engineering and drug delivery applications
[15].
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Sericin proteins have been characterized and utilized in various biomedical applications
since the past decade. Sericin from B. mori mulberry silk variety consists of 30 % serine content
and approximately 15 % glycine, 15 % aspartic acid and 6 % threonine content [15, 48, 49]. It is
believed that the protein is called sericin due to a high amount of serine residues in the amino
acid sequence. The molecular weight of sericin ranges from 10 to 400 kDa with varied protein
biochemistry depending on the extraction and processing methods [45]. Depending on the
silkworm variety, amino acids content varies, and so the structural conformation of the protein
also varies. For instance, B. mori silk sericin (BMSS) has 36.1 % random coils structure that pre-
dominates other conformations such as turns (35.1 %) and helix (28.8 %). A. assama silk sericin
(AASS) has turns (37.1 %) as the predominating structure, whereas P. ricini silk sericin (PRSS)
has B-sheets (40.8 %) as the predominating conformation [45]. Sericin plays various roles in the
wound healing process due to cell stimulating properties, which have been discussed separately

in section 5.
2.3. Spider silk

The silk protein produced by numerous spiders differs from species to species in composition
and structure. Varieties of spider silk proteins exist depending on the differences in their amino
acid sequence. Their compositiorns also differ based on particular movements and functions such
as dragline movement, orb-web formation or cocoon construction [3]. The unique physical
properties of spider silk have led to an increasing interest in harbouring the protein for various
biomedical applications. However, harvesting large numbers of spiders for obtaining native
spider silk fibers is difficult in comparison to silkworms. Besides, the yield obtained from spiders
ranges from 12 — 137 meters, which is far lesser than the cocoon fiber from a single silkworm
(600 — 900 meters) [50, 51]. Therefore, researchers have resorted to using the RDT for the
production of recombinant spider silk artificially. Technological advancements in genetic
engineering have enabled the integration of spider silk encoding genes and successful expression
of spider silks through a range of host systems [3, 52]. Both the native and recombinant spider
silk proteins have been used to fabricate dermo-epidermal skin constructs, as the platform of

spider silk supports cell encapsulation and cellular co-culture (Figure 4).
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Dragline silk is the highly explored spider silk variety owing to the unique tensile and
light-weight properties [3]. Spiders store the soluble form of dragline silk in a sac of their major
ampullate glands and spontaneously produce silk fibers through the duct during their
spontaneous movements. Moreover, dragline silks hold supercontraction property under
hydration conditions and are considered to be a tougher material in comparison to steel and
Kevlar [53]. Numerous varieties of recombinant spider silks have been generated over the years
that mimic the native structural and functional properties of dragline silk. For example, MaSpl
and MaSpll - Major Spidroin dragline types | and Il of Nephila clavipes, ADF-3 and ADF-4
dragline silks of Araneus diadematus and 4RepCT partial dragline silk of Euprosthenops
australis. [3, 52]. Till date, micro-organisms like E. coli bacteria are the most exploited host
organism owing to the simple bacterial system, easy purification process and high yield [3].
However, recombinant spider silks have been produced from a wide variety of other host
systems like potato, tobacco, mammary glands of mice and goats [3]. Transgenic mice carrying
genes of spider silks was a successful attempt, wherein the mice produced ADF-3 and MaSpl
silk proteins in their milk over many generations [54, 55]. Mammalian cell systems are also
efficient in the expression of recombinant spidroins (ADF-3) secreted from mammalian cell lines

cultured under hollow fiber bioreactors [56].

The spider silk is composed of an assembly of spidroins, which contains crystalline
repetitive regions along with non-repetitive N-terminal and C-terminal domains [3]. Spider silk
protein is abundant in glycine and alanine blocks in its repetitive region similar to silkworm silk
fibroin protein; however, the overall protein sequence is quite different. Another feature of spider
silk is its high elasticity due to the presence of short repeats of semi-amorphous regions like
GPGXX (B-spirals or B-turns) and GGX (helix) in the non-crystalline regions [50]. The B-sheet
crystalline regions serve as connecting links to the amorphous chains and form a network
structure, thereby maintaining the tensile and elastic properties of spider silk. The method of
producing recombinant spider silk holds another advantage of synthesizing silk with desired
biophysical properties. For example, two types of bioengineered spider silk were produced; one
containing 2 repeats of individual blocks and another containing 12 repeats [58]. The silk protein
thus obtained were referred as H(AB)2 (11.6 kDa) and H(AB)12 (43.7 kDa), where ‘A’ block
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comprised of a B-sheet forming poly(alanine) hydrophobic sequence and the ‘B’ block consisted
of four repeats of GGX hydrophilic sequence. By varying the number of repeats of (AB) blocks,
silk proteins with different degradation rate and mechanical strength were successfully obtained
[58]. The study thus revealed that by controlling the sequence and number of repeat motifs,
programmable silk materials could be artificially synthesized with desired physical properties
[58].

Significant progress in the field of genetic engineering has made it possible to produce
recombinant spider silk with high yield. In a recent report in 2018, mass production of spider silk
was demonstrated in transgenic B. mori silkworms, where the fibroin heavy chain (FibH) was
replaced with major ampullate spidroin-1 gene (MaSpl) of N. clavipes [59]. In another recent
report, researchers were successful in producing large size dragline spidroin of N. clavipes,
which consisted of 192 repeat motifs (highest till date) [60]. Through this, the spider fibers
completely replicated the mechanical strength of native silk fibers, achieving a tensile strength of
1.03 + 0.11 GPa with modulus 13.7 £+ 3.0 GPa and extensibility (18 + 6%). Such high
mechanical properties in recombinant spider Ssilk were previously not achieved due to
significantly short repeats of spidroins (96-mer) [60, 61]. Such research outputs indeed
demonstrate the future prospect of spider silk protein as a next generation material in various

applications.

The unique and diverse biomechanical properties of spider silk proteins have encouraged
its application in regenerative medicine to a great extent. Both the natural as well as recombinant
spider silks are biocompatible and biodegradable; therefore, considered as a potential candidate
in the field of tissue engineering [18, 62]. Spider silk has shown great potential in wound healing
applications when examined in vitro and in vivo [18, 63, 64]. The woven mesh of native spider
silk fibers demonstrated significant development of epidermal layer over the fibers, as the silk
frame supported keratinization of cultured cells [18]. Spider silk has also demonstrated wound
healing properties when applied on burn wounds in an animal study [63]. Such studies have
motivated many researchers to develop simple strategies to use spider silk protein for biomedical
applications. The recombinantly produced 4RepCT spider silk and 4RepCT-based fusion
proteins have been used to functionalize bulk materials by simple coating procedures [65, 66].

The 4RepCT proteins hold inherent property to self-assemble at ambient temperature and
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develop a thin coating over bulk base materials like titanium implants and silkworm SF matrices
[65, 66]. A real-time study through quartz crystal microbalance with dissipation monitoring
(QCM-D) confirmed that the spider silk fusion proteins tend to continuously self-assemble onto
surfaces by forming nano-fibrillar structures [65, 66]. This leads to the formation of a
homogenous thin coating of spider silk proteins over base materials. The stable interaction
between 4RepCT fusion proteins and SF bulk matrices was smartly utilized to generate
functionalized constructs containing bioactive domains attached to 4RepCT proteins. This also
led to a chemical-free coating method to functionalize silkworm SF matrices for developing
bioactive wound dressings and bioartificial skin graft [26]. The spider silk coated nanofibrous
matrices and microporous scaffolds thus developed demonstrated faster wound healing outcomes

when examined under diabetic and burn wound models in vivo respectively [67, 68].

Similar to 4RepCT, recombinantly produced eADF spidroins also hold self-assembly
properties upon shear stress or in the presence of different ions to form self-assembled
nanofibrils and stable structures [52, 69]. The self-assembly property of recombinantly produced
eADF led to the facile formation of hydrogels and 3D printed constructs for tissue engineering
applications [69, 70]. The highly concentrated eADF4(C16) (3 % wi/v) and its RGD motif
containing variant readily formed hydrogels at ambient conditions, which could be applied to
develop cell-laden 3D bioprinted constructs [70]. The recombinant spider silk when printed with
human dermal fibroblasts demonstrated cell viability under the layered structure, indicating

potential applications of such 3D printed constructs in skin tissue engineering (Figure 4-111) [57].
2.4. Silk-elastin-like protein (SELP)

Like recombinant spider silk, another variety of recombinant silk is silk-elastin-like protein
(SELP), which contains properties of both silk and elastin proteins [71, 72]. The recombinantly
produced silk proteins hold an advantage over naturally available silk materials because material
properties and functionalization can be easily controlled and modulated at the genetic
level. SELP is a good example of the recent development in the field of material science and
biotechnology. SELPs are de novo biomaterials that are designed to combine the biological and
mechanical properties of silk and elastin based on their individual repetitive motifs of amino
acids [72]. SELP holds self-assembling property, which makes pH- and thermo-responsive

materials and can be easily processed into nanofibers, nanoparticles, hydrogels, fibers, and thin
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films [19, 71-77]. SELP is made up of silk-like and elastin-like repetitive blocks that together
render pH- and thermo-responsive properties [71, 74]. The presence of glutamic acid in the silk-
like repetitive octapeptide GAGAGAGE imparts pH-responsive properties. The pentapeptide of
elastic-like repetitive VPGXG motif are responsible for temperature induced phase transition and
thus impart thermo-responsive properties to the SELP. The random coiled structures are
transformed to B-spiral structure (similar to B-sheet in SF) upon lowering the pH and changing
the temperature, thereby forming aggregates. The (GA)n repeats further help in self-assembly of
the protein [71, 74].

Further, there are many varieties of SELP materials depending on the choice of X residue
of elastin block, the ratio between silk and elastin repetitive blocks and length of the overall
protein chain [74, 78]. Tunable materials can be easily generated by changing these parameters.
For instance, the thermal responsive properties of SELP. were tuned by increasing the silk-elastin
ratio, which led to higher inverse transition temperature [74]. In another example, by varying the
amino acid in X residue of elastin block, SELPs responded differently to various stimuli like
temperature, pH, ionic strength, redox, enzymatic stimuli and electric fields [72]. SELP is a
biocompatible material with low cytotoxicity and holds the potential to promote proliferation and
migration of fibroblasts [79]. The phase changing properties of SELP was utilized in forming
thermo-responsive injectable hydrogels. Besides this, other properties like biodegradability of
SELP materials is easy to tune by simply varying the ratio of silk to elastin blocks. High elastin
content in SELP demonstrated faster degradation and vice versa [80, 81]. Moreover, the
combination of silk and elastin did not compromise the biocompatibility of the final material.
The electrospun mats fabricated using SELP biomaterial demonstrated high swelling degree
(570-720 %), water vapour transmission rate in the range of 1083 g/m%day and mechanical
properties with the elastic modulus of ~126 MPa, illustrating the material as a potential
candidate for wound healing applications [82]. The nanofibrous SELP mat supported adhesion

and proliferation of normal human skin fibroblasts, proving biocompatible properties [82].

SELPs are largely explored in the controlled delivery of macromolecules, drugs, plasmid
DNA or adenoviral vectors [80]. There are a few reports on the application of SELP in tissue
regeneration and wound healing as well. The current state of the art demonstrates an immense

potential of SELP in wound healing applications. The advanced genetic engineering has shown
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facile ways of producing engineered biomaterials artificially and functionalizing them at the
genetic level. Successful functionalization and generation of spider silk materials fused with
bioactive moieties has already been demonstrated with the help of RDT [3, 50, 52]. Similarly,
SELP if functionalized with bioactive moieties such as growth factors, cell binding peptides or
antibacterial moieties, can also contribute to advanced next-generation wound dressings. In a
study, SELP based thermo-responsive hydrogel accelerated the wound healing rate in diabetic
mice model [83]. A study revealed the migratory effect of SELP protein on fibroblast and
macrophage cells [79]. The study also showed that fibroblasts cultured on SELP matrix helped in
producing a higher level of collagen, thereby indicating the potential of SELP in skin tissue
engineering [79]. Being recombinantly produced, there is a lot of research on the production of
SELP with high yield. In a recent study, Collins et al. developed a strategy to increase the
volumetric productivity of SELP up to 4.3 g L * post-purification, which is the highest reported
yield till date [84].

3. Suitability of SF as a biomaterial for wound healing — an update on the properties of silk

aiding in skin regeneration and wound healing.

Wound healing is a sequential process that begins with haemostasis to stop bleeding and prevent
excessive blood loss [85]. The next phase includes inflammation and proliferation, which
comprises recruitment of various types of cells like neutrophils, macrophages, endothelial cells,
fibroblasts, and keratinocytes [85]. Multiple cells play numerous roles of secreting chemokines,
producing growth factors, forming blood vessels, developing granulation tissue, and re-
epithelializing wounds to ultimately seal the wound cavity. Once the wound is completely
closed, the final phase of healing process starts, where the previously formed matrix of the
wound cavity is gradually remodelled into a new matrix, leading to either a completely

regenerated skin or a semi/non-functional scar tissue [85].

Application of silk in healing the cutaneous wounds commenced decades ago through
silk sutures. Silk fibers, directly isolated from the cocoons, were used as sutures in the ancient
time. With the advent of modern surgery, silk sutures were commercialized considering the
mechanical properties of silk threads, as the knots formed by silk threads were strong and easy to
handle [1, 86]. However, the threads directly isolated from the cocoons consisted of both fibroin
and sericin protein, which elicited an immune response in patients. Sutures made up of such silk
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threads were known as virgin silk sutures, which were later modified to remove the sericin
content [1]. Sutures made up fibroin protein after complete removal of sericin component are
referred to as black braided silk [1]. On further processing the black braided silk variety, silk
threads were developed having a coating of wax or silicone materials (Perma-Han dTM). Virgin
silk has been reported to cause type | allergic reactions, induce asthma, and upregulate IgE levels
in some cases owing to the immunogenicity elicited by the presence of sericin glue in the silk
fibers [1]. On the other hand, black braided silk sutures were reported to be relatively safe, and
no cases of allergy or upregulation of IgE antibody were found. Following the immunogenic
reports, sericin and fibroin components of silk are not used in combination for the fabrication of

matrices for tissue engineering applications [5].

Both silk sericin and silk fibroin are separated from the silk fibres and processed
separately to fabricate individual matrices. Although both the materials are considered suitable
for wound healing, the physical properties of SF give additional advantage in developing
matrices. SF, being a bulk biopolymer, has structural properties, which provide benefits in
fabricating self-standing matrices through numerous strategies designed so far. On the other
hand, sericin doesn’t hold structural properties, and hence, pristine sericin based matrices are
challenging to fabricate. Due to its highly hydrophilic nature, sericin based constructs are
designed by taking the help of blending materials and cross-linking agents [87]. If we look
deeply into the healing process supported by a silk-based matrix, we find that the platform of silk
is involved in every major step of the healing as described in the details in the following sub-
sections. Briefly, the basic properties provided by SF for cutaneous wound healing applications

are as follows:

» Haemostatic property — By interaction of SF with fibrinogen and blood platelets.

» Cell migration and cell recruitment — By NF-kB signalling pathway.

» Exudate absorbing capacity — by high water and moisture retention capacity of SF
protein.

» Mechanical strength and elasticity — due to the high mechanical strength of SF as a
biopolymer, which renders integral stability to a dressing material, prevent wound bed

disruption and ability to conform to the wound size and shape.
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» Cell — material interaction — SF supports cell attachment, migration, proliferation and
differentiation

» Wound healing action — due to the intrinsic bioactive properties of SF in cell migration,
helping in neo-vascularization, enhanced re-epithelialization, and tissue ingrowth.

» Skin friendly (non-toxic, non-allergenic and non-sensitising) — due to biocompatibility
property of SF protein.

» Ease of application and structural support — easy to fabricate different format designs
(film / nanofiber / hydrogel / porous sponge / 3D printed construct).

» Easy functionalization — cross-linker free functionalization of SF-based matrices with a
range of antibiotics, growth factors, and other bioactive molecules.

» Cost effective — due to the inexpensiveness of silk as a raw natural material.

» Easy to commercialize — B. mori silk fibroin-based products: SERI scaffold (mesh of
silk threads) and regenerated silk-based scaffolds are FDA approved with 510(k)

clearance.
3.1. Haemostasis by SF

There are reports on the thrombogenic effect of black braided silk sutures during implantation,
which is attributed to the binding properties of silk with blood platelets and fibrin [88]. The study
showed thrombus formation during the initial days, which later declined and depicted signs of
new endothelium layer and complete endothelialization by 28 days of implantation [88]. The
haemostatic activity of silk fibers was also found to be attributed to the surface properties of silk
threads and the ability to bind with proteins, helping in clotting cascade [89]. This was validated
by the wax coated silk threads, which modified the surface properties of silk and significantly
reduced the thrombotic response. Sulfation and heparinization of SF are commonly used
methods to make the silk an anticoagulant material because the non-treated silk was reported to
coagulate the blood [90-92]. In another study, thin films made up of regenerated silk solution
demonstrated binding with fibrinogen (a component of fibrin clot), confirming the haemostatic
property of SF even in the regenerated form [93]. This phenomenon of natural interaction or
binding of fibrinogen with silk was utilized in a recent work, in which the coagulant
supplements, namely, fibrinogen and thrombin were mixed with silk solution and casted to form

porous sponges. The haemostatic matrix thus developed acted as a carrier to slowly deliver
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fibrinogen and thrombin [94]. The interaction of silk with clotting proteins like fibrinogen not
only offered haemostasis, but could also serve as a cargo that releases inflammatory factors to

lead the healing process toward its next phase.
3.2. Effect of SF on cell attachment, migration, and proliferation

Quick adhesion, migration, and proliferation of cells are crucial factors that decide the rate of the
wound healing process. A wound dressing acting as a supporting platform over the wounds
should enable cells to attach and migrate, and provide a conducive microenvironment for cellular
growth, proliferation, and differentiation. Cell adhesion, as the name implies, refers to the
attachment of cells on the matrix. Moreover, the initial binding of cells is a critical factor for
wound healing, because the sooner cells adhere to the dressing material, the faster they migrate
and get recruited to the wound site to aid the healing cascade [26]. Once the cells are attached,
they tend to migrate from higher cell-density region to lower cell-density region. This migratory
behaviour of cells actually helps in recruiting the cells from wound edges towards the wound
cavity. To study the migration behaviour of cells, a scratch assay is considered as a standard
experiment under in vitro conditions [95]. Herein, a cell monolayer is developed and a scratch is
created in the form of a thin line by removing the cells from a particular region. With time, the
cells present in the wound edges try to fill the gap created in the cell monolayer. In order to find
the efficacy of any biomolecule or biomaterial, this experiment is performed by taking the

biomolecule in the foetal bovine serum (FBS) depleted media.

Migration of keratinocytes studied through the scratch assay revealed that the SF protein
stimulates cell migration by activating MEK, JNK, and PI3K signalling pathways [96].
Keratinocyte migration was also observed through a different approach using agarose gel drop
assay in our recent study. Herein, a small drop of cell-laden agarose gel was placed on top of an
acellular silk gel matrix; the experiment showed the cells migrating out from agarose gel towards
the silk gel [22]. The study thus indicated that silk holds inherent property of helping the cells to
migrate and therefore recruiting them towards the wound site. A recent study proved the wound
healing property of BmSF attributed to the NF-xB signalling via microarray analysis and scratch
assay [24]. The study by Park et al. not only proved the impact of silk on cell migration, but also
demonstrated that it promotes healing by regulating the expression of vimentin, cyclin D1,
VEGF, and fibronectin, which are well-known markers of cell proliferation (Figure 5) [24]. In
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another study, peptide fragments derived from chymotrypsin digested B. mori fibroin heavy

chain demonstrated bioactivity in promoting the proliferation of skin fibroblasts [97].

3.3. Immune response to the SF biomaterial

Our body has an inbuilt mechanism of the immune system that regulates the prevention of
foreign substance invasion. The foreign substances not only include pathogens and infectious
organisms, but also materials that are implanted in case of organ transplant. The body’s immune
system does not recognize the implants as self and therefore respond to it by eliciting an initial
foreign body response [98]. Once a graft is implanted in the host system, the inflammatory
response is evoked and depending on the type of material, the reaction either subsides in a later
phase or becomes chronic due to long-term immunogenicity. Such long-term inflammation
against allogenic transplants is often the common cause of graft rejection, as the host system fails
to accept the transplanted graft [98]. Various in vivo and clinical studies have demonstrated that
silk is minimally immunogenic [8, 10, 22]. Silk does not provoke long-term inflammation as
evidenced in various studies. Silk-based matrices elicit an initial immune response that subsides
in the later phases, showing signs of graft acceptance [10, 22]. In a study, artificial dermis
fabricated using SF material demonstrated low inflammatory response along with showing signs

of cell infiltration, neovascularization, and extracellular matrix deposition [9].

An initial inflammatory phase is already a part of the wound healing process after the
haemostasis. Therefore, in the context of wound healing, silk dressings, or silk grafts might help
in accelerating the healing process because of overlapping inflammatory responses [10, 22]. A
mild inflammatory response provoked against implanted matrices during initial time-points of
dressing application or implantation help in the activation of macrophages and thereby
stimulated them to secrete chemokines and growth factors [10]. The activation of mild foreign
body response includes the formation of multinuclear giant cells and recruitment of immune cells
and fibroblasts [10]. It was observed that implanted silk scaffolds induced the formation of
foreign body multinucleated giant cells (FBGCs) soon after implantation, but the response was
significantly reduced in the later stages of implantation [10, 99]. FBGCs is beneficial if formed
temporarily at the early phase of wound healing because it could destroy the pathogens and

recruit cells like macrophages, fibroblasts and blood capillaries to grow a granulation tissue at
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the boundary of the implant [10, 100]. However, presence of FBGCs for prolonged duration
often leads to the formation of a fibrotic capsule that might turn into a permanent scar tissue
[100]. Long-term implantation of silk sponges revealed that silk material does not induce FBGCs
for prolonged duration; and hence, are considered safe as an implantable material [101]. In a
study, porous silk sponges demonstrated a significantly lower population of immune cells post 4-
weeks implantation in comparison to 2 weeks [102]. In another study, quantification of
inflammatory cells post 12 weeks implantation of silk constructs showed negligible
inflammatory response with no inflammatory cells in comparison to that of 4 weeks post-
implantation [103]. Regression of fibrosis was observed in a study, in which silk scaffolds were
implanted in heart tissue to treat myocardial infarction [104]. Herein, fibrosis observed after
two weeks of implantation was completely disappeared after 8 weeks, thereby indicating
negligible long-term immunogenic reaction by silk biomaterial [104].

3.4. Degree of neovascularization and angiogenesis supported by SF matrices

Neovascularization or angiogenesis during wound healing is often referred to as the formation of
blood vessels in the newly developed granulation tissue at the wound site [105]. This event is a
part of the proliferation phase of the healing process, where new blood capillaries sprout in the
neo-tissue to provide nutrient supply. Silk matrices have shown extraordinary properties in
helping the angiogenesis of wounds in various studies [22, 30, 106]. Nanofibrous matrices of
different silk varieties demonstrated the formation of blood capillaries at an early onset of
healing in both acute and diabetic wounds in our study [30]. In our recent study, silk hydrogel
treatment for 3"-degree burn wounds demonstrated 10-fold higher blood vessel density in
comparison to untreated wounds post 7 days of treatment [22]. This might also be attributed to
the property of silk to evoke an immune response at the initial time-points [22]. This clearly
indicates that the platform of silk over wounds support the formation of neo-tissue and help in

recruiting cells for the formation of blood capillaries.

In the context of skin grafting, neo-vascularization within the graft becomes critical,
because the newly formed blood vessel must merge with the previously present blood vessels at
the wound boundaries, the process known as anastomosis [107]. A detailed study of silk-based
artificial skin grafts supporting anastomosis under in vivo conditions is not available in the

current literature. Anastomosis using pre-vascularized silk-based matrices seems very
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challenging because it requires permanent integration of the graft with the native tissue.
Moreover, the growth of blood vessels within the scaffolds also depends on the pore size and
pore interconnectivity [108]. However, such comparative studies are yet to be investigated using
silk matrices in the skin engineering applications under in vivo conditions. Successful permanent
implantation of silk grafts in the form of artificial skin is a challenging task. By significantly
modulating the physical properties of silk, development of pre-vascularized skin grafts using silk
as a biomaterial can be an interesting and revolutionary topic of research in the field of skin

tissue engineering.
3.5. Re-epithelialization supported by SF matrices

Re-epithelialization is considered as a major event in the wound healing process, as it seals the
wound cavity with a fully-grown epidermal layer on the top. Silk has shown cell migratory
effects via NF-kB signalling pathways, which attributes to improved re-epithelialization as
previously described [24]. The platform of silk nanofiber matrix was found to promote the
formation of epithelial layer over an in vitro wound model made up of collagen gel [109]. In the
follow-up work, it was also evidenced by the expression of cytokeratin 10 (CK10) and
cytokeratin 14 (CK14) markers in the regenerated epithelial layer under in vivo wound model
[110]. CK10 expression demonstrated the differentiation of keratinocytes in the newly formed
epidermis in the wounds treated with silk matrices [110]. Such observations were also found in
our recent study, which demonstrated suprabasal and basal expression of CK 10 and CK 14
respectively in the wounds treated with silk hydrogel after 3 weeks of healing in a burn wound
model [22].

In another study, a thin epithelial tongue could be visible in the histological stainings of
wounds treated with silk-based matrices [30]. The study showed a budding epithelial layer
progressing towards the wound cavity during the mid-stage of the healing process [30]. The
inherent bioactivity of aiding epithelialization present in the SF is also utilized in corneal wound
healing. Herein, silk was used in the solution form (0.5 % and 2 % w/v) as a liquid eye drop
under rabbit models denuded of their epithelial surface. The study demonstrated regeneration of
corneum epithelium and epithelial cell proliferation as marked by Ki-67 and focal adhesion

kinase markers [111]. Conclusively, it can be said that the platform of the silk provides an
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artificial cell conducive microenvironment that helps in the migration of keratinocytes, thereby

leading to early stage re-epithelialization of wounds.
3.6. Biodegradability of SF in vivo and in vitro

SF, being made up of polypeptide chain, holds biodegradability in the proteolytic conditions. The
degradation rate also depends on the concentration, format, and type of protease treatment [112].
Under in vivo conditions, degradation of silk depends on the implantation site and host system.
Under the non-proteolytic environment, silk is known to be very slowly biodegradable (taking
months or years) [112, 113]. The high stability of SF is due to the (GAGA)n repetitive
hydrophobic domains present in the fibroin heavy chain [113, 114]. Subcutaneous implantation
of silk-based constructs is often considered as a standard method to examine biodegradability
and immune response in vivo [101]. Under in vitro experiments, significant degradation of silk-
based constructs is observed using proteases such as protease K, alpha-chymotrypsin,
collagenase, and matrix metalloproteinases (MMPs) [112-115]. The slow degradation behaviour
of silk also demonstrates the protective effect of p-sheet regions in the overall stability of the
protein, because most of the proteases act outside the B-sheet regions, thereby leaving the bulky

hydrophobic core intact and stable [115].

In vivo degradation study of silk constructs provided interesting outcomes, revealing the
role of macrophages and immune cells in slowly degrading the silk matrix when implanted
subcutaneously [99, 101, 116]. The silk scaffolds remained intact and showed significantly
slower degradation rate when implanted in immune-compromised nude rats in comparison to
healthy Lewis rats [101]. This indicated that silk is highly stable under in vivo conditions and is
slowly degraded by the phagocytosis action of macrophages [101]. In another study, the stability
of silk fibers was examined by measuring the tensile strength of subcutaneously implanted fiber
after 70 days of implantation in an animal model. The results indicated a significant reduction in
the tensile strength after 70-days of implantation [117]. Being a slowly degradable biomaterial,
the sutures made up of silk threads are also considered as long-term absorbable or permanent
sutures [1]. Slower degradation rate might be advantageous to fabricate wound dressing matrices
or for temporary grafting applications, which holds long-term stability and provides sufficient
mechanical strength. However, such matrices are not suitable for permanent grafting applications

and should be precisely modified to match the wound remodelling rate.
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Wound dressing, is basically a temporary platform provided on the wounds, to seal the
wound cavity momentarily and aid in healing. Depending on the type and size of wounds,
dressings are changed after a frequency of some days. Thus, a stable matrix is required for
dressing applications, so that it does not disintegrate in the wound bed. However, for permanent
graft implantation applications, the rate of degradation should match with the rate of formation
of neo-tissue [112]. Since the platform of silk supports cell migration and growth, it has been
observed that it integrates well with wound bed during initial time-points; but as the underneath
tissue grows with time, the silk matrix dries up and gets automatically removed in the later phase
[22, 68]. To develop a silk-based artificial skin, the biodegradability of the material might be a
big limitation, and needs to explored in future. One way to achieve a faster degradation rate is to
use the material with low content of B-sheet structures, as the degradation rate is inversely
proportional to the content of 3-sheet structures [114]. Another approach might be the fabrication
of constructs with a low concentration of the material or functionalizing it with high proteolytic
sites. Such grafts having faster biodegradation rate might be capable of remodelling into skin

tissue once implanted permanently.
4. Silk-based matrices and their design considerations

Easy processability of SF to cast into various shapes is an additional advantage of this material
that makes it a suitable candidate for fabricating wide varieties of structural constructs. The bulk
SF biopolymer is easy to transforim into numerous types of constructs like thin films, hydrogels,
injectable systems, porous scaffolds, 3D printed grafts and nanofibrous mats (Figure 6) [8, 25,
26, 118, 119]. Silk is extensively explored for engineering artificial organs ranging from soft
tissues like ‘pancreas to hard tissues like bone [4, 23, 120-123]. The tunable mechanical
properties and biodegradability have attributed to the development of a wide range of organs
using silk. Researchers have utilized this property to fabricate tissue-mimicking surfaces and
structures. With the idea of ‘form follows function’, a variety of tissue-mimicking constructs
have been developed so far. For instance, thin films with a patterned surface, lamellar scaffolds
with aligned pores and nanofibrous mats with fibers having a diameter in the nanometer scale
[30, 37, 122]. Herein, we discuss various design considerations and composite matrices

developed for skin regeneration and wound healing applications.
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The fibroin heavy chain of silk is the structural protein complex that consists of long
crystallizable hydrophobic domains along with amorphous hydrophilic domains. The packed -
sheet structures of the crystallizable domains in SF play significant roles in manipulating the
properties of the protein. Amount of crystallinity can be easily varied in a controlled manner by
tuning the B-sheet formation induced by numerous well-established physical and chemical
methods. For instance, changes in solution conditions like fibroin concentration, pH,
temperature, solution aging, ionic strength or blending with other polymers lead to permanent
crosslinking and an overall increase in B-sheet content in the SF [124-127]. Physical methods of
B-Sheet induction include mechanical shear (vortexing), sonication, and electric field, which
result in enhanced physical permanent crosslinking [127-130]. The most well-established and
commonly used method for B-sheet induction in the pre-formed silk constructs includes
immersion of constructs in ethanol/methanol bath or vapor annealing using water vapor or
ethanol vapor [21, 37, 122]. Crosslinking of silk in the solution form is mostly performed by the
horseradish peroxidase (HRP)-H,O, enzymatic method, which is used to fabricate hydrogel-
based constructs [131]. Hydrogels are formed by polymeric networks that hold a significant
amount of water between their chains. Hydrogels possess an additional advantage over other
construct designs, as they maintain hydration environment for a long time [132]. Therefore,
hydrogel-based dressings and skin grafts might be considered as an ideal design for cutaneous

wounds, especially for burn injuries.

Other highly utilized design formats include silk-based thin films and nanofibrous mats
for wound dressing applications. Such matrices act as occlusive or semi-occlusive matrices
because silk possesses sufficient water holding properties, and they also provide barrier
properties [8, 30]. SF being a biopolymer, is easy to blend with other natural and synthetic
polymers. Utilizing this property, several composite materials have been developed so far as
listed in (Table 1). Nanofibrous mats could be successfully developed from various silk varieties
by using PVA as a blending material (Figure 6-1) [30]. Silk blended with alginate demonstrated
significantly improved wound healing as compared to commercially available Nu Gauze™ in a
rat model [133]. In a recent study, composite scaffolds made up of SF, and human hair keratin
developed as a dermal substitute for skin regeneration demonstrated enhanced secretion of
collagen type 1| (Figure 6-11) [123]. Crosslinked SF-elastin composite scaffolds were also

designed to achieve desired elasticity for treating third-degree burn cases [134]. Biomimetic
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nanofibrous mats by SF and chitin in 3:1 ratio exhibited better attachment and spreading of
human Kkeratinocytes, suggesting their potential in skin tissue engineering [135]. The
encouraging results shown in such studies demonstrate great potential of silk-based matrices in

wound repair and regeneration.
5. Wound healing properties of silk sericin and applications

Owing to the inherent bioactivity of SS, it has been directly used in ointments and dressing
materials for wound healing applications [44, 136]. The dressings are designed so as to deliver
the SS at a slow and sustained rate at the wound site [44]. Under in vitro cell culture conditions,
SS can be used as a growth supplement in serum-free media, as it supports cell growth
and differentiation [137]. SS is also considered as an alternative to FBS for the culture of bovine
embryo [138]. The study demonstrated the development of blastocysts in the presence of 0.05 %
sericin, which was similar to the in vivo blastocysts development stage [138]. Sericin is also
considered as an albuminoid protein similar to bovine serum albumin (BSA), which is a
supplement in commercially available serum-free media [139]. The mitogenic effect of sericin
on mammalian cells is well-established in numerous studies, especially on fibroblasts and
keratinocytes, which are majorly involved in the wound healing process [44, 140]. Apart from
the biological efficacy of SS towards mammalian cells, SS also holds antibacterial activities
[141]. SS promotes blebbing of the bacterial cell membrane, thereby inhibiting the bacterial
growth and reproduction [141]. in a study, nanofibrous mat containing SS demonstrated zero

microbial penetration when used as a cover over test tubes containing nutrient broth [44].

Other bioactive property of sericin includes antioxidant activity that helps in scavenging
reactive oxygen species (ROS) [45]. Cell culture media containing sericin protein was found to
be beneficial for cellular viability even under hydrogen peroxide (H.O,)-driven oxidative stress
conditions in vitro. The free radical scavenging activity of sericin is attributed to the presence of
hydroxyl group of the serine residues [45]. This property of SS provides an additional advantage
to the biomaterial, as the ROS generated during chronic inflammation in cutaneous wounds can
be scavenged using sericin based wound dressing. Oxidative stress and persistent inflammation
are the hallmark of chronic cutaneous ulcers like diabetic foot ulcers [142]. Therefore, materials
containing sericin might help in preventing prolonged inflammation of chronic wounds. Being

rich in serine residues (with a higher number of hydrophilic groups), SS is responsible for natural
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moisturization of skin and keeping the wound bed moist for accelerated healing outcomes [143].
In previous studies, it has been shown that SS helps in fibroblast proliferation and inducing
collagen secretion, thereby aiding in wound contraction at a faster rate [48, 144, 145]. Sericin
holds ultraviolet (UV)-light protection and anticancer activities as well [146, 147]. In another
study, sericin in combination with silver sulfadiazine cream promoted healing of full-thickness
burn wounds in animal model without provoking any proinflammatory or allergic response
[148]. All these properties indicate SS as a multifunctional bioactive material and demonstrate

huge potential in skin regeneration therapeutics.

On studying the effect of sericin on cellular migration and proliferation under in vitro
conditions, it was found out that it stimulates migration of cells via upregulation of c-Jun and c-
Jun phosphorylation [96]. The study revealed activation of MEK, JNK, and PI3K signalling
pathways underlying the wound healing properties of silk sericin similar to silk fibroin. The
results were also confirmed by inhibiting the above mentioned three kinases that prevented c-Jun
upregulation and phosphorylation [96]. In another study, the role of sericin in angiogenesis was
investigated through biomolecular pathways. The study demonstrated that sericin has a direct
impact on the increased expression of vascular endothelial growth factor (VEGF) and hypoxia
inducible factor-la (HIF-1a) and (HIF—2oa) [149]. The comparative study showed higher
expression of VEGF in the presence of sericin via HIF and MMP-mediated pathways in the

comparison to the sample without sericin.

Although, the presence of silk sericin with fibroin in virgin silk sutures showed adverse
inflammation in patients; such inflammatory reactions were not observed when sericin was used
in its pristine form. Sericin, in its soluble form, was found to be immunologically inert, as it did
not induce long-term expression and tumor necrosis factor (TNF)-a secretion when mixed in the
media in the culture of RAW 264.7 immune cells [150]. In order to further investigate the
immunological response to silk sericin, inflammatory mediators were studied under both in vitro
and in vivo conditions [144]. The study was performed using monocytes and alveolar
macrophage cell lines to monitor the levels of interleukin (IL)-1p and TNF-a secreted in the
presence of sericin at concentrations of 0.2—1.0 mg/mL [144]. The in vitro results indicated dose-
dependent secretion of TNF-a and IL-1p from both the cell lines in the culture medium;

however, the secreted cytokine levels were not high enough to begin a cascade that leads to
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inflammatory effects. Animal studies demonstrated faster healing, and lower levels of
inflammatory mediators in the sericin treated full-thickness excision wounds [144]. In another
study, sericin based hydrogel developed via photo-crosslinking demonstrated scarless wound
healing, as attested by the regeneration of hair follicles and sebaceous glands in the regenerated
skin in an animal model [143]. The study revealed better healing efficacy of sericin hydrogel in

comparison to the commercially available Pelnac and Tegaderm wound dressings [143].

Furthermore, a combination of sericin and fibroin was utilized to develop a bi-layered
wound dressing [151]. Herein, porous sponge of sericin and glutaraldehyde-crosslinked silk
fibroin/gelatin was fabricated that acted as a bioactive layer on top of a wax-coated silk fibroin
woven fabric. The dressing was designed in such a way that both sericin and fibroin were used as
components, but both the materials were in two separate layers. The bi-layered bandage thus
developed supported cellular proliferation and adhesion, and promoted faster healing of full-
thickness wounds in an animal model in comparison to the clinically used Tegaderm dressing
[151]. However, the authors did not study the inflammatory response of the developed dressing.
Hence, a detailed study is missing at the molecuiar level, which focusses the signalling pathways
and long-term implantation of sericin-fibroin combination materials. It is worth noticing that the
combination of sericin and fibroin has shown immunogenicity in the silk threads that are directly
isolated from the silk cocoons. There is no study on the inflammatory response towards the
scaffolds made up of combination of sericin with regenerated fibroin protein (post LiBr
extraction method) as per the current state of the art. Therefore, more research is needed to
explore detailed signalling pathways behind the immune response provoked by combining
sericin and fibroin components of silk. Looking deep into the inflammatory reaction in response
to the combination of silk materials and their impact on wound healing can be a major topic of

research and may unfold numerous unknown properties of both the silk components.

Sericin has been used in combination with other natural biomaterials or synthetic
polymers like chitosan, alginate, gelatin, collagen, bacterial cellulose, PVA, poly(L-lactide-co-¢-
caprolactone) (PLCL) and many more for wound dressing applications [44, 87, 152-156]. Sericin
along with supporting materials as mentioned above are fabricated in various formats like a
porous sponge, nanofibrous mats, glue, hydrogels, bilayer sponge, thin films and 3D printed
constructs (Table 1) [15, 44, 87, 151, 153-155]. In our recent study, we developed composite
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nanofibrous matrices by blending SS with PVA, which generated nanofibers in the range of 130-
160 nm in diameter (Figure 3-1) [44]. Another widely explored blending material is chitosan,
which is used as a composite material along with sericin. In a study, sponge dressing was
developed containing sericin and chitosan glutamate loaded with platelet lysate for enhanced
fibroblast proliferation [157]. The dressings demonstrated a beneficial effect of platelet lysate
loaded composite dressings for dermal matrix reconstruction under in vivo conditions. In another
recent study, medical tissue glue was developed containing gelatin, sericin, and carboxymethyl
chitosan blend solutions to obtain biological properties of all three biomaterials in the
combination [158]. The study showed high bond strength of 2.50 + 0.04 N within 10 minutes
post-application of the glue, which was comparable to the alpha-cyanoacrylate biological glue
(2.25 £ 0.05 N) currently being used in clinical practices. The sericin based tissue glue thus
developed was biocompatible, non-toxic, cost-effective and suitable for wound healing

applications [158].

Since the beginning of sericin utilization in the tissue engineering field, numerous types
of sericin based wound dressings have been developed for the treatment of diabetic wounds and
burn injuries. Sericin-based porous freeze-dried scaffolds demonstrated successful generation of
bilayer skin tissue by co-culture of fibroblasts and keratinocytes (Figure 3-11) [46]. In a recent
study, sericin was used in 3D printed dermal substitute in combination with GelMA [47]. The
printed constructs were transparent and supported coculture of HaCaT and HSF cells to generate
dermal and epidermal layers In the developed artificial skin, suitable for wound healing
applications (Figure 3-ill,1V) [47]. Sericin is also used in the dissolved form, where it is mixed
with the ointment and applied on wounds [136]. In the study, wounds created in streptozotocin-
induced diabetic rats when treated with an ointment containing sericin demonstrated enhanced
wound healing rate [136]. Sericin was also used to develop an in situ forming hydrogel owing to
the presence of a high number of hydrophilic residues in it, which could readily form a semi-
interpenetrating hydrophilic network with polyacrylamide to act as a dermal sealant [159]. To
further functionalize the sericin, Wang et al. applied genetic engineering to develop transgenic
silk cocoons that contain sericin protein functionalized with FGF1 [160]. The injectable
hydrogels fabricated using FGF1-functionalized sericin demonstrated long shelf-life of FGF-1

and enhanced cellular activities in terms of quick adhesion and viability [160]. This strategy led
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to a cost-effective production of FGF containing biomaterial at a large scale for regenerative

therapeutics.
[TABLE 1: List of silk-based composite matrices and design of the constructs].
6. Human skin equivalent and bio-artificial skin using cellularized silk biomaterials

With the growing global impetus on harnessing the regenerative properties of silk biomaterial, a
few studies have shown the development of artificial cellular skin using stem cells and co-
culturing various cells under in vitro conditions. Apart from the development of wound dressing,
fabrication of viable skin grafts should be considered as a separate genre in the silk-based
technology. Therefore, the review demands a separate discussion on the silk-based bioengineered
living skin equivalents developed so far. Taking advantage of the biocompatible properties, silk
matrices could be easily cultured with single or multiple cell types. This allowed co-culture of
skin cells in silk derived constructs under suitable in vitro conditions to develop laboratory
grown artificial graft. The most common practice of developing an artificial skin include
fabrication of a bilayer structure using dermal fibroblasts and epidermal keratinocytes. Skin,
being a layered structure, is often constructed artificially in the form of a bilayer or trilayer
design [27, 187]. The bilayer structure is build-up of the dermal bottom layer (containing
fibroblasts) and the epidermal top layer (containing keratinocytes) [188]. In the trilayer construct,
an additional bottom-most hypodermal layer is fabricated, which contains adipocytes. Till date,

only a few studies are reported on the trilayer skin construction concept using silk biomaterial.

As far as the fabrication of bilayer skin construct is concerned, the most common
approach is applied with porous matrices, where fibroblasts populate the silk scaffold, on top of
which keratinocytes are seeded and allowed to mature [27, 187, 189]. In order to generate a
stratified epidermal layer, the co-cultured silk matrices are lifted to provide an air-liquid interface
(ALI) and hence, tissue maturation takes place with time. This well-established practice of
generating bilayer skin grafts is successfully demonstrated using few construct designs like
woven/non-woven fibers, porous freeze-dried scaffold, nanofibrous matrix, and 3D printed
hydrogels [18, 26, 47, 118, 190]. Co-culture of skin cells in silk matrix began more than a decade
ago by Dal Pra et al., where the non-woven fibrous matrix was developed directly from the
degummed silk fibers via formic acid crosslinking [191]. The fibrous 3D matrix supported long-

term co-culture of human dermal fibroblasts (HDFs) and human epidermal keratinocytes (HEKS)
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up to 75-97 days under in vitro conditions, thereby forming a dermo-epidermal bilayer
equivalent. The study also showed de novo production of collagen fibers in the co-cultured
constructs, thus indicating dermal tissue formation in vitro [191]. Similarly, Wendt et al.
fabricated a woven matrix of cross-weaved native spider silk fibres on steel frames to co-culture
fibroblasts and keratinocytes [18]. Herein, the metal frame offered an additional advantage by
not only giving mechanical support but also provided an easy way for lifting the cultured matrix
in the ALI conditions (Figure 4-11). The study demonstrated the generation of a bilayered skin

model, comprising of dermal and epidermal equivalents in 5 weeks culture period [18].

Although the woven or non-woven fibrous architecture support the fabrication of bilayer
skin equivalent, manual construction of fibrous matrices can be a cumbersome process. Smart
technological advancements like electrospinning hold potential to venture large-scale production
of a nanofibrous matrix. However, the electrospun nanofibrous matrix faces a significant
drawback of porosity, which limits the migration of celis within the construct. To overcome this,
Park et al. developed a novel 3D porous scaffold containing electrospun silk nanofibers by
adding NaCl crystals [190]. Highly porous architecture could be easily obtained by adding NaCl
crystals into silk nanofibers during electrospinning and subsequent salt leaching. The
nanofibrous scaffolds thus developed contained large pores and supported fibroblast-keratinocyte
co-culture under ALI to generate skin equivalent tissues [190]. Although the initial work on
generating bilayer skin tissue using silk began with woven/non-woven fibrous matrices, the
fibrous architecture was not explored much for skin tissue engineering applications in recent
times. This might be attributed to the fact that a porous sponge or hydrogels provide better

interconnectivity in pores in comparison to a fibrous matrix [192].

More commendable work in this area includes the utilization of porous freeze-dried silk
scaffolds as a 3D matrix for developing tissue model. A highly porous sponge with suitable pore
size is able to guide cells for migration and proliferation, especially when the target is to develop
a vascularized dermal layer. In our recent study, we used freeze-dried porous silk scaffolds to
simulate the dermal bed by co-culturing skin-derived HDFn and HDMEC [26]. The porous silk
scaffolds used herein were coated with FN-4RepCT recombinant protein (containing fibronectin
motifs) for enhanced attachment and proliferation of cells (Figure 4-1). Further, to generate

bilayer skin construct, HaCaT cells were cultured on top of the simulated dermal layer, and ALI
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was provided. The study demonstrated a facile fabrication strategy of living skin equivalent,
expressing mature epidermal markers like keratin 5, keratin 10, and Involucrin under just 21 days
of in vitro culture conditions [26]. Similar results could be observed in another study, where
composite scaffolds made up of silk fibroin, and fibrin sealant provided a suitable environment
for the co-culture of fibroblast and endothelial cells [193]. The addition of fibrin biomaterial to
the silk scaffold provided a suitable microenvironment for the generation of capillary-like

structures in the scaffold. However, the study did not focus on epidermal layer development.

In another study, development of bilayer skin construct using porous scaffold was
performed using silk sericin biomaterial. Herein, sericin hope was extracted from the cocoons of
B. mori mutant silkworms to obtain a high yield of sericin material, which was subsequently
designed into a porous freeze-dried scaffold using genipin crosslinker [46]. The 3D scaffold co-
cultured with fibroblasts and keratinocytes maintained prolonged cell viability and demonstrated
stratified epidermal layer, indicating successful development of a bilayer living skin construct.
The study also provided evidences that silk sericin can be a potential biomaterial for fabricating
artificial skin grafts under in vitro conditions. The potential of sericin in skin tissue engineering
was further observed in a recent study, where 3D bioprinted skin construct was fabricated [47].
The bio-ink consisted of sericin and methacrylic-anhydride-modified gelatin (GelMA)
transparent hydrogel that sustained fibroblast-keratinocyte co-culture for bilayer skin

development.

Another breakthrough study in the field of skin tissue engineering is recently carried out
by Vidal et al., which demonstrated the fabrication of immunocompetent full-thickness human
skin equivalents containing nervous system (Figure 7) [131]. Till date, the study is first of its
kind that has successfully developed a complex skin tissue with co-culture of multiple cell types
under laboratory conditions. Herein, a silk-collagen composite hydrogel system was fabricated,
which provided long-term stable cultivation of cells with minimal gel contraction. The study
targeted to overcome the major drawback of gel contraction in the pristine collagen hydrogel
system. By blending mechanically strong silk bulk biopolymer with collagen hydrogel, the
unique composite hydrogel not only prevented matrix contraction but also maintained cell-
binding domains of collagen. The blend hydrogel was matured to form a neuro-immuno-

cutaneous system (NIC) by co-culturing primary cells, neuronal cells, and immune cells [131].
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The study was one-step ahead of the bilayer system, as the composite system showed a third
layer of the hypodermis.

A three-layer artificial skin tissue better mimics the actual skin architecture; however,
generating the hypodermis along with dermal and epidermal layers is very challenging and hence
there are only a few reports on the generation of trilayer skin system in vitro. Previously, authors
from the same group led by Prof. David Kaplan demonstrated the fabrication of trilayer skin
construct by developing a bilayer (dermo-epidermal) of pristine collagen gel and subsequently
placing it on top of a previously formed hypodermal layer made up of pristine silk scaffold
[194]. The study demonstrated the generation of trilayer full thickness skin equivalent within 2
weeks; however, long-term stability of the graft was not studied. in comparison to the previously
developed trilayer skin system containing different layers made up of different biomaterials
[194], the NIC composite silk-collagen hydrogel proved to be a better system for long-term
culture [131]. The authors also demonstrated a foliow-up study one year later to study
relationships between the skin and immune/nervous systems by RNA sequencing [25].
Comparison among various sample groups was performed through the established model of NIC
to discern the effect of neural and immune components in the skin system. The detailed analysis
proved that the cutaneous system containing both neural and immune cells resulted in
upregulation of specific genes involved in key biological pathways, which could be further

studied to understand various cell signaling pathways [25].

With the emerging 3D printing technology, silk-gelatin bio-ink is recently used to
bioprint a bilayer living 3D printed skin construct [118]. The 3D printed silk-based graft
mimicked the Dbilayer structures of skin tissue anatomically, showing mechanical and
biochemical features resembling the natural skin (Figure 6-111). Migration of keratinocytes within
the porous construct aided in epithelialization of the bilayer skin substitute with a cornified
epidermal layer. The printed construct demonstrated epidermal-dermal junction upon tissue
maturation, showing basement membrane structures at the interface. The detailed study also
involved extensive transcriptomics and proteomics analysis using the 3D bioprinted skin
construct, which depicted the involvement of pathways related to dermal development,
keratinization, and organization of ECM components such as collagen fibril synthesis [118].
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Therefore, the generation of a complex cutaneous system in vitro helped in understanding the
necessary factors involved in skin development. Such a functional 3D model of full-thickness
skin might be instrumental in studying wound healing pathways, and testing of drugs or cosmetic
products on a large scale to avoid animal experiments or animal testing respectively. Another
significant achievement using this technology may lead to the development of in vitro disease
models in the near future; for instance, 3D melanoma model can be established to study cancer

pathways and drug testing under laboratory conditions.
7. Bioactive factors loaded functionalized silk matrices for drug delivery to the wound bed

Silk has been used as sutures, tissue scaffolds, haemostatic, and drug delivery agents since
decades [1, 110, 195]. Both physical and biological properties of silk material are easily
manipulated simply by structural re-adjustments. Apart from the biocompatible properties of silk
as a biomaterial, it holds extraordinary properties for drug delivery applications. The bulk
material of SF can be utilized as a cargo, which delivers drugs, biomolecules, and growth factors
at a slow and sustained rate [32]. This property of silk has been extensively exploited for wound
healing applications as illustrated in the composite image showing functionalization of silk with
EGF, antibiotic or DNA molecules (Figure 8). Various bioactive molecules that have been used
to functionalize silk matrices are listed below that demonstrates the application of silk in drug
delivery application for wound repair and regeneration (Table 2). In addition to the drug delivery
applications, silk also helps in stabilization of biomolecules and preserve the bioactivity of
drugs/molecules for more prolonged time [196]. For example, antibiotics like penicillin and
tetracycline incorporated in silk films demonstrated higher stability in comparison to their
storage in solution and powder form [197]. Silk films are largely explored for wound healing
applications. Therefore, functionalization of silk films with antibiotic incorporation provides an
additional advantage to cure infected wounds and prevent wound infection [197]. In another
study, silk microneedle arrays containing tetracycline demonstrated sustained release and
preserved bioactivity of the antibiotic against Staphylococcus aureus, which is the most

commonly found bacteria in the infected wounds [198].

Drug entrapment and stabilization within silk biomaterial depend on various factors like
hydrophobic or hydrophilic interactions, electrostatic interactions or hydrogen bonding. The
aqueous solution of silk is generated by dissolving silk fibers in LiBr solution [5]. This process
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breaks the highly stable hydrogen bonds in the B-sheet structures of fibroin fibers and the
aqueous silk solution is obtained. While fabricating constructs using the silk solution, the
hydrogen bonds are re-formed and the stable f-sheet structures are formed to render stability to
the structure of silk construct [199, 200]. For functionalization, aqueous soluble drugs or
biomolecules are directly added in the silk solution, and thereafter, the solution is processed into
a particular design. For example, during the fabrication of a thin film, the hydrogen bonds are
reformed in the drug loaded silk upon air-drying, causing entrapment of drugs or biomolecules in
the film [201]. Hydrogen bonding with the biomolecules might be one factor behind their
stability in silk constructs. As the drug-loaded silk constructs remain in wet condition, the drug
gets slowly released from the cargo. In a study, drug release mechanism from silk films was
examined by loading the films with different molecular weight FITC-dextrans ranging from 4 to
40 kDa [202]. The study revealed that the diffusion mechanism was the primary factor for

sustained release rate, as also determined by the Peppas equation.

Antibiotic drug incorporation in sillkk can be done permanently by conjugation as well as
temporarily for sustained release. In a study, functionalized spider silk fibers were generated that
were conjugated with Levofloxacin antibiotic through click chemistry (Figure 8-11) [203]. In a
detailed study, antibiotic release assays were performed from different material formats like
films, microspheres, lyophilized porous sponge, hydrogels and injectable formulations fabricated
from regenerated silk solution and also from degummed silk fibers isolated directly from cocoon
[205]. The study revealed efficient drug loading and sustained release properties in all the design
formats. The study determined the efficacy of ampicillin-releasing hydrogels under in vivo
conditions in a murine model of wounds infected with S. aureus [205]. The lyophilized sponges
loaded with gentamicin and cefazolin demonstrated sustained drug release for 3-5 days. Drug
release saturation was achieved within 5 days from the silk matrix containing hydrophilic
antibiotics like gentamicin [205]. In contrast, hydrophobic drugs like rifampicin and
erythromycin showed longer release durations (9-31 days), which might be attributed to the
hydrophobic interactions between the drug and the hydrophobic cores of silk [205].
Penicillin, ampicillin, cefazolin, and gentamicin loaded in various formats like films, hydrogel or

microgel also demonstrated short release durations with preserved antibiotic efficacy. The
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release behaviour of hydrophilic drugs might be attributed to the diffusion mechanism as also
determined in the FITC-dextran loaded silk matrix [202].

The release mechanism of hydrophobic drugs was found to be non-diffusion-based, and
hence, drug loading procedure was also different in comparison to that of hydrophilic drugs
[205]. Loading of hydrophobic drugs into the silk constructs was performed by taking the help of
methanol solution unlike hydrophilic drugs that were simply mixed in aqueous silk solution
[205]. For encapsulating hydrophobic drugs, pre-formed silk constructs were dipped in the
methanol solution saturated with the hydrophobic drug; thus, drug loading was done by
adsorption or soaking mechanism [205]. The drug compound was entrapped in the silk polymer
network during methanol soaking, which showed slow and constant release upon immersing in
aqueous solution due to drug hydrophobicity. For example, porous silk sponges loaded with
rifampicin via methanol soaking demonstrated longer release duration up to 9 days [205].
Therefore, drug loading strategies with silk material might be different depending on the nature
and properties of the drug. The study not only validated the drug release efficiency of various
silk constructs but also proved the capability of silk material to sequester and stabilize bioactive

antibiotics in an encapsulation form.

Similarly, loading of growth factors is performed by various strategies for fabricating a
biofunctionalized wound healing material (Figure 8-1) [109, 110]. In the case of epidermal
growth factor (EGF), both adsorption and solution mixing strategies were analysed with silk
films and nanofibrous mats [110]. There was no significant difference between EGF loaded film
and EGF coated film. The method of pre-mixing the growth factor with aqueous silk solution
prior to the fabrication of silk dressings was also utilized to deliver EGF and fibroblast growth
factor (FGF) from silk-based nanofibrous mats [30]. Further, post-treatment of silk matrices that
lead to B-sheet induction differs depending on the functionalization type and material format. For
example, the drug/biomolecule loaded silk constructs were treated with vapours of
ethanol/methanol or water vapour, instead of directly immersing the constructs in ethanol or
methanol solutions [21, 206]. This procedure was applied to minimize the initial burst release,

thereby preventing the drug loss in methanol solution.

To achieve precise control of drug release rate, modulation of the silk fibroin crystallinity

using different processing conditions (e.g., ethanol/methanol, water vapour annealing, salt
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treatment, silk concentration or design format) can be critical parameters. In another report,
sulfonated SF solution was used by diazonium coupling chemistry to improve the binding of
FGF-2 to fabricate functionalized silk films [207]. Thin films made up of silk decorated with
sulfonic acid (70 groups per SF molecule) demonstrated 2-fold increment of FGF binding in
comparison to non-sulfonated silk [207]. This mimicked the natural binding of FGF with
glycosaminoglycan heparan sulfate, an ECM component present in skin, which is considered as a
physiological storage site of FGF. Similarly, sulfonated silk was used for fabricating 3D
bioprinted dressing patch containing FGF [186]. The sulfonated silk containing FGF aided in
accelerated wound healing, as confirmed by the in vivo experiments in murine model [186].
Growth factor loading and release rate depend on various factors like charge and
hydrophobic/hydrophilic moieties. SF, with a pl of 4.2, is mostly negatively charged. By
adjusting the charge of SF, growth factor loading efficiency can thus be modulated.

Apart from ionic or electrostatic interactions, the presence of hydrophobic blocks in the
silk might be an additional factor for sequestering growth factor and variation in their release
rate. The hydrophobic cores vary among various silk varieties, which might interact differently
with the amino acids of additive molecules (for example growth factor peptides). In our recent
study, we observed that the release rate of EGF and FGF from various silk based nanofibrous
matrices were different, thereby supporting the speculation [30]. The study revealed variation in
the growth factor release profile between mulberry and non-mulberry SF matrices owing to the
differences in their overali crystallinity and variation in the hydrophobic cores [30]. Further,
differences in the EGF release and FGF release rates from the same type of silk matrix was
attributed to the variation in the isoelectric point of EGF (pl 4.78) and FGF (pl 9.58).

Loading of growth factors via silk not only offers a platform of sustained release but also
increases the stability of the bioactivity of loaded growth factors [196]. Local or topical
administration of growth factors may lead to their short half-life and early degradation in the
proteolytic wound environment [208, 209]. Combining the bioactive molecules with silk
biopolymer helps in sequestration of the bioactive molecules within the bulky silk biomaterial
and thereby keep them stable for a prolonged duration. The drug delivering potential of silk
biopolymer indicates its full applications in delivering various active biomolecules for

pharmaceutical therapeutics applications [32]. A study also proved that cultured cells provided
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essential cell conducive cues to the silk matrix that benefitted the construct with secreted
cytokines and bioactive molecules. Herein, human adipose-derived stem cells (ASCs) were
cultured on silk nanofibrous mats for 7 days, which were subsequently decellularized to prime
the silk patch with secretions of cultured ASCs [210]. The study showed that the primed silk
mats (decellularized) promoted wound healing and demonstrated complete wound contraction
within 10 days, compared with 15-17 days in the control group (non-primed acellular silk mats).
The study indicated that silk constructs could be a housing material to grow allogenic cells,
which can be later decellularized before grafting [210]. This strategy could indeed overcome the
troublesome procedure of culturing autologous cells by using allogeneic cells and subsequent
decellularization of the construct.

In the context of drug delivery, it is worth mentioning that silk is also explored for gene
delivery applications. Silk scaffolds conjugated with cationic complexes of poly(ethylenimine)
(PEI) and pDNA efficiently acted as gene delivery carriers [211]. The cell binding RGD motif
inherently present in A. pernyi SF was found to be helpful in specific targeting to cells. pPDNA
encoding VEGF165 and Ang-1 packed in ApSF carriers could successfully transfect mammalian
cells [211]. Cationized BmSF scaffolds were also successfully fabriced containing PEI/pDNA
complexes for gene delivery of VEGF165-Ang-1 and wound healing applications (Figure 8-111)
[204]. Another emerging therapeutic approach of treating highly infected wounds is phage
therapy. Herein, bacteriophages are used as antibacterial agents for controlling some specific
pathogenic bacteria. As a proof of concept, lyophilized silk matrices containing live viral
vaccines of Measles, Mumps, and Rubella demonstrated improved viral activity retention owing
to the vaccine-silk interactions [197, 212]. Silk with its ability to incorporate viruses might be

explored in the future to develop phage-containing silk dressings for treating wound infections.

[TABLE 2: List of silk-based functionalized wound dressings loaded with bioactive

molecules/antibiotics/antimicrobial peptides/growth factors].

8. An update on the clinical studies and silk-based translational products from bench to
bedside

Clinical implementation of silk-based grafts or wound dressings is necessary to validate the
proof of concept, which might be helpful in delivering such products in the healthcare market. In

this context, a lot of silk-based technologies are patented that describe the inventions for wound
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repair and regeneration. Some of the recent patents on silk-based materials are listed below that
indicate huge potential of these products in the market in the near future (Table 3). Most of the
patents are also owned by healthcare companies like Allergan Inc., which clearly demonstrate
the ongoing translational route of silk-based products from bench to bedside. As listed in the
table, the patented technologies include silk wound dressing patch, dermal fillers, tissue sealants,
haemostats, antibiotic-loaded silk patch and scaffolds for tissue engineering applications. Apart
from this, there are few reports on the clinical trials and pre-clinical studies using silk-based
matrices for wound healing applications (Figure 9 and Figure 10). The FDA approved SERI
scaffolds made up of B. mori silk threads are clinically used in surgical applications [14, 246].
The SERI surgical scaffold contains a mesh network of silk threads isolated directly from the silk
cocoons [246]. The proprietary rights of the product were held by Serica Technologies Inc.
(Medford, MA, USA), which made efforts to obtain 510(k) clearance from the FDA to
commercialize the SERI Surgical Scaffold. The SERI surgical scaffold was accepted because it
cleared the International organization for standardization (1SO) biocompatibility testing, proving
the scaffold a non-toxic, non-pyrogenic, non-allergic and overall a biocompatible grafting
material [14, 246]. The product is now owned by Sofregen Medical Inc., Medford and can be

purchased by surgeons in the USA for surgical applications.

SERI scaffolds are examined in various surgical applications like abdominal wall
reconstruction, body contouring, breast reconstruction, massive weight loss surgeries, and as an
adjunct to lower body lift [247-251]. The multicentre retrospective clinical trial of SERI scaffold
in the form of a supportive artificial tissue for abdominal wall reconstruction was performed on
172 patients. The study revealed success rates of SERI scaffold in the cases of abdominal wall
fascial repair, abdominoplasty, reinforcement of abdominal flap donor site and ventral hernia
repair after 18 months of the surgery with low or minimal postoperative complication rates
[251]. In the clinical study of 2-stage breast reconstruction over 161 number of breasts, SERI
scaffolds proved to be a good implantable material as observed by the patient satisfaction and
98.8 % success rate after 2 years. The study also demonstrated long term tissue stability analysed
by breast anatomy measurements, thereby proving long lasting benefit and safety of the SERI
scaffold in breast reconstruction surgeries [249]. In a case report of weight loss surgery, SERI
scaffold was implanted as a supportive matrix to the abdominal fascia in order to prevent the

loose and poor appearance of skin at the abdomen region [250]. The body contouring surgery
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demonstrated that the silk scaffold was able to maintain flat shape of trunk and integrity of the
abdominal fascia along with signs of circumferential body lift and no recurrent laxity after 24-
months follow up [250]. All these clinical reports suggest long-term efficacy of SERI scaffold
due to the bioresorbable nature of silk biomaterial. The body contouring and breast
reconstruction surgeries also indicate that the silk scaffold integrates well with the native tissue.
However, the clinical studies done so far lack a comparative study with control groups such as
well-established silicone-based implants in case of breast reconstruction surgeries. By comparing
the silk group with other commercially available implants could provide a better understanding
on the regenerative properties of silk biomaterial. One advantage of silk scaffold over synthetic
materials is that there is no need of secondary surgery to retrieve the implant due to the
bioresorbable nature of silk and invasion of host cells in the scaffold. Synthetic implants such as
silicone-gel filled breast implants remain as a separate entity and do not integrate with the host
tissue. Leakage of silicone gel upon silent rupture of the implant is a common drawback of
silicone-based breast implants because it requires additional revision surgeries and frequent
follow up visits for rupture detection [252]. Further long-term study of silk-based scaffolds in
comparison to the commercially available implants is definitely required to examine their

efficacy, advantages and limitations.

The wound healing efficacy of SERI scaffolds examined in mice model using dorsal
skinfold chamber (DSC) revealed early granulation tissue formation and neovascularization in
the scaffolds on day 5 post-implantation [14]. Blood vessels were also observed to be penetrating
the scaffold, thereby making a densely vascularized regenerated tissue at the wound site. The
experiment not only demonstrated successful integration of SERI scaffold with the host tissue
but also showed possible graft take potential of the silk scaffolds (Figure 9-1). Regressed
inflammatory response in the later phase of wound healing observed by the decrement in
neutrophils levels indicated minimal immunogenicity and long-term safety of the scaffolds. Both
early and late stages of inflammation showed immunocompatible properties of the scaffold.
Histological study of the implanted scaffold further revealed deposition of collagen fibers within
the threads of SERI scaffolds on day 10 post-implantation [14]. The study thus demonstrated
tissue bioresorbable and regenerative properties of the SERI scaffold that could be implanted
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permanently at the wound site. The study also indicated an enormous potential of the resorbable
SERI scaffolds for reconstructive surgery and skin regeneration applications [14]. In a long-term
study, biodegradation mechanism of the scaffold was found to be macrophage-associated, with a
granulomatous inflammatory response within the yarns, as evidenced in an intramuscular
rat model [253]. Non-immunogenic response by the scaffold was demonstrated by measuring the
average plasma IgE concentration, which was constant at baseline levels for 6 months post-
implantation in rats. Similar tests of the scaffold performed in a large animal model (goat
knee) demonstrated no signs of acute inflammation or adverse immunogenic response when
implanted for 12 months [253]. The tests thus indicated slow biodegradation, negligible immune

response, and absence of hypersensitive reaction.

Although the SERI scaffold proved to be a decent choice of matrix for cutaneous wound
healing in animal studies, there are no reports of clinical trials on patients with skin wounds.
Clinical trials on cutaneous wounds would be an interesting study to further examine its healing
efficacy in comparison with commercially available wound dressings. Application of SERI
scaffolds on split-thickness wounds could reveal how the matrix interacts with the host tissue
when applied on external organ of the body. Although bioresorbable nature and tissue integration
was observed when the scaffold was implanted in internal organs like breast and abdomen, host
tissue response might differ at the dermal region. The animal study on SERI scaffold performed
on DSC mice model used a metallic frame to prevent graft contraction, which helped in the
integration of silk scaffoid with the host tissue [14]. However, preventing graft contraction in
case of human skin wounds is a challenging task. Cutaneous wounds tend to contract while
healing and silk scaffolds might fail to permanently integrate with the skin tissue due to high
mechanical strength and slow biodegradation rate of silk. In our recent work, we observed that
the silk hydrogels and scaffolds integrated well with the native skin tissue at initial time-points
(day 3 and day 7) in murine model; however, they could not remain permanently integrated at
later time-points (after day 14) because a supportive metallic frame was not used in the study
(Figure 9-11,111) [22, 68]. Human trials on silk-based grafts could further reveal interesting
outcomes on how these matrices could be applied permanently in case of large full-thickness

trauma wounds.
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In this context, it is necessary to mention that silk-based matrices when used as wound
dressings and applied temporarily on the wounds (with a timely dressing change schedule) have
shown great potential in animal studies. The animal trials conducted with silk wound dressings
have demonstrated better healing outcomes in comparison to commercially available products
such as Tegaderm 3M tape, Tegaderm hydrocolloid 3M dressing and Duoderm dressing patch
made up of synthetic materials [67, 68, 110]. Better outcomes observed by silk dressings in
comparison to synthetic materials are attributed to the cell-interactive properties of silk
biomaterials that stimulate cell migration and proliferation. Commercially available dressings
made up of synthetic polymers mostly provide barrier properties to the wounds but they lack cell
recognition sites. Silk, on the other hand, guide cellular ingrowth and tissue regeneration at the
wounded region due to its inherent biocompatibility and bioresorbability (also discussed in
details in section 3). However, clinical study on patients is necessary to confirm better healing
efficacy of silk wound dressings in comparison to well-known synthetic wound dressings
available in the market. In addition, wound microenvironment differs among various types of
cutaneous wounds such as trauma wounds, diabetic ulcers, pressure sores, burn injuries and
severely infected wounds. Clinical studies on different wound types in human cutaneous system
are still missing in the current state of the art. This suggests that performing wound specific
treatments using silk-based matrices under clinical trials are current difficulties in the application

and translation of silk products.

Another SF based product, particularly for wound dressing applications, is Sidaiyi silk
sponge that is attached to a silicone membrane. It is a two-layered scaffold dressing approved by
the China Food and Drug Administration [8]. In a recent clinical study using thin silk film on
donor site skin wounds, the silk films demonstrated better healing outcomes in comparison to
Sidaiyi silk sponge (Figure 10) [8]. The comparative study between silk film and Sidaiyi sponge
was performed on 36 and 35 patients respectively, which showed 9.86 + 1.79 days as the average
healing time by silk films in comparison to 11.35 + 3.03 days by Sidaiyi sponges [8]. The study
also revealed that none of the patients suffered from severe conditions when treated with silk
films, indicating 100 % healing by 14 days. However, adverse events were observed in 4 out of
35 patients when treated with Sidaiyi, indicating 88.6 % healing by 19 days as calculated by
continuity correction statistical method. Although both the matrices are made up of BmSF,

different format and construct design might be a plausible reason for discrepancies in the clinical
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results. For instance, the exudate handling capacity of silk film and Sidaiyi sponge was different.
The wounds treated with silk film did not show accumulation of exudates; however, Sidaiyi
scaffolds accumulated exudates at the wound-site and demonstrated empyema in 3 patients and
excessive fluid leakage in 1 patient. Apart from the biological activity of SF helping in the
wound healing process, better fluid handling capacity and gaseous permeability by silk films
provided additional advantage as seen in this study [8]. Such clinical studies indicate an immense
potential of silk-based matrices in wound healing applications and skin regeneration therapeutics.
However, more clinical trials on other types of wounds and comparative studies with well-
established commercial products may confirm healing efficacies of silk products for better

clinical outcomes.

Silk patches in the form of thin silk films are also used in clinical studies for the
treatment of tympanic membrane perforations [254]. A silk patch made up of regenerated B.
mori silk fibroin is approved in the South Korea by the nhame Tympasil (Daewoong-Bio, Seoul,
South Korea). According to the clinical- trial, 40 patients suffering from chronic tympanic
membrane perforation demonstrated better performance of Tympasil in comparison to the
conventional perichondrium myringoplasty [254]. Another silk-based commercial product is
provided by an Indian company ‘Fibroheal ™" that delivers ‘bilaminated wound healing sheet’
for surgical wound cover applications [255]. The Fibroheal silk dressings are made up of thin
sheets of woven silk fibers having a coating of BmSF solution to better interact with the
wounded tissue [255]. Application of silk is well-known in textile industries as a clothing
material. Special silk clothing with the product name MICROAIR DermaSilk® was examined in
a clinical study for the treatment of atopic dermatitis in 31 young children (mean age 2 years)
[256]. Kids suffering from atopic dermatitis with acute lesions showed better outcomes with
significant decrease in the severity of lesions after 7 days. The study conducted in comparison
with cotton clothes indicated that silk material could be a better clothing option in such

conditions, especially for children [256].

Apart from fibroin-based matrices, sericin has also attracted cosmetic and pharmaceutical
attention. In a recent patent, the sericin-based invention describes the potential use of sericin in
personal care or cosmetic formulations (Patent no. WO 2019/101524 Al, patented by Unilever
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international company, 2019). The sericin-based compositions provide benefits of
moisturization, anti-inflammation, anti-pollution, anti-oxidant, and anti-aging. Such cosmetic
products patented by international companies indicate their expected translational in the market
in the near future. In addition, the beneficial effects of sericin in wound healing applications have
attracted many researchers to conduct detailed pre-clinical and clinical studies to further explore
the benefits of this natural protein. In a study, porous scaffolds made up of sericin/PVA blend
demonstrated a significantly higher rate of wound healing and re-epithelialization, in comparison
to the PVA scaffolds without sericin biomaterial [165]. This inspired the researchers to further
validate the wound healing efficacy of the developed scaffolds in patients [257]. The clinical
trials on the treatment of split-thickness skin graft donor sites were performed in comparison to
the clinically available “Bactigras®” wound dressing [257]. The results demonstrated healing
properties of sericin based dressings, as the wounds were completely healed in 12 + 5.0 days in
comparison to those treated with commercially available Bactigras® (14 * 5.2 days) in the
patients [257]. In another clinical trial study, patients with burn wounds were treated with silver
zinc sulfadiazine cream added with sericin in comparison with the control cream without
additional sericin protein [258]. The randomized and double-blind clinical trials demonstrated
that the burn wounds treated with sericin loaded cream were completely healed in 22.42 + 6.33
days, in comparison to the control group that took approximately 29.28 + 9.27 days. The study
also showed that the incorporation of sericin was safe and beneficial because there were no signs

of post-treatment allergies or severe inflammation in the patients [258].

[TABLE 3: List of the published patents that highlight the application of silk-based materials

and uses thereof. Source: Data retrieved from Google patents (accessed 23.06.19)].
9. Conclusion and future perspectives

The complicated process of wound healing involves various events and interactions between
different cells and ECM components. Cell-matrix interaction is one of the most important
parameters that regulate the wound healing process. In this context, interactions between silk
biomaterial and cells play a significant role in healing the cutaneous wounds. As discussed
above, cell-silk interactions promote wound healing and aid various cellular events associated
with faster wound repair and regeneration. From the clinical perspective, silk-based matrices are
suitable as a dressing material as well as to develop a dermo-epidermal bio-artificial skin graft.
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The results indicate that silk-based matrices hold great potential in plastic surgeries in the near
future. Furthermore, easy and facile techniques to functionalize the silk material with various
bioactive molecules and antibiotic drugs depict the prospect of multi-functional wound dressings
for wound specific treatments. Different fabrication strategies and design formats are also of
great interest from the wound management perspective. A particular wound type demands
specialized dressing material, which is possible using silk biomaterial. Application of silk-based
products in the healthcare section clearly depicts the progress of silk biomaterial from bench to
bedside. However, more detailed clinical studies and pre-clinical studies are needed to validate

the wound healing efficacy of silk-based dressing materials and implants.

Recently, smart dressings like flexible electronic skin (e-skin) are developed that can
detect temperature and pressure through the assembled temperature- and strain-sensors using
silk-based matrix [289]. Such research efforts demonstrate the potential of next-generation smart
dressings and wearables that might have human-machine interfaces for human-health
monitoring. Transdermal drug delivery using silk-based microneedles is another example of the
developing technology using silk biomaterials [290]. With the scope of on-demand drug delivery
approaches, smart dressings containing sensors and drug cargos can be easily developed using
this bulk material [119]. Besides, utilization of the aqueous state of silk biopolymer through
green extraction methods allow easy processing techniques in mild condition without the
application of harsh organic solvents. Such facile methodologies have also made it possible to

fabricate functionalization of silk-based materials with sensitive bioactive molecules.

Finally, the emerging technological advancements like 3D bioprinting may utilize silk-
based bioinks for precisely controlled architecture, reproducibility, and large-scale production.
Precise positioning of biomacromolecules and cells using silk-based 3D bioprinted construct
may deliver functional and viable full-thickness artificial skin grafts. In addition, silk being an
inexpensive natural material may bridge the gap between the need and the high demand by
lowering down the cost of healthcare products. Improvement in the bioprocess engineering has
already established large scale production of recombinantly produced biomaterials like spider
silk, SELPs and their fusion proteins containing bioactive domains. The advanced genetic
engineering techniques have also delivered transgenic silkworms that produce silk cocoons
containing growth factor peptides [241]. All such innovations using recombinant DNA
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technology may be fruitful in developing next-generation smart materials in the near future.
Overall, we support the idea that technological advancements in basic science and engineering in
combination with material science research hold great potential in the future. Further pre-clinical
and clinical studies on the developed silk materials may open gates for efficient treatments and
commercialize the silk-based products.
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assama silk fibroin; 3D, 3 dimensional; FN, fibronectin; RGD, Arg-Gly-Asp; FBS, fetal bovine
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growth factor; KGF, keratinocyte growth factor; HIF, hypoxia inducible factor; MMPs, matrix
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SF; AMP, antimicrobial peptide; COL, collagen; TNF, tumor necrosis factor; IL, Interleukin;
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matrix, ASCs, adipose-derived stem cells; FBGCs, foreign body multinucleated giant cells;
CK10, cytokeratin 10; (CK10); CK14, cytokeratin 14; siRNA, small interfering RNA; ApSF, A.
pernyi SF; AySF, A. yamamai SF; GelMA, methacrylic-anhydride-modified gelatin; ALI, air-
liquid interface; NIC, neuro-immuno-cutaneous system; K10, Keratin 10; VIM, Vimentin;
AgNPs, silver nanoparticles; SFFD, silk fibroin freeze-dried; SFFG, silk fibroin freeze gelled;
SFKR, silk fibroin—keratin blended scaffolds; CAD, computer aided design; I1SO, international

organization for standardization; HE, haematoxylin and eosin.
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Figure 1: (I) Schematic diagram of the structure of B. mori silk fibroin (BmSF) showing heavy
chain of the fibroin protein containing both amorphous and B-sheet structures; image adapted
with permission from [4]. (I1) Schematic design of the processing and fabrication strategies using
regenerated BmSF; images reproduced with permission from [10] ©2015 Elsevier Ltd. (111)
Schematic diagram of the structure of 4RepCT depicting repetitive poly(alanine) blocks
alternated with glycine-rich segments along with a globular C-terminal domain; images
reproduced with permission from [20] ©2010 Elsevier Ltd. (IVV) Morphology of various types of
matrices fabricated using 4RepCT recombinant spider silk like film, foam, fiber and mesh in
comparison to the control matrices prepared from regenerated BmSF; images reproduced with
permission from [20] ©2010 Elsevier Ltd.
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Figure 2. Diagram of a three-dimensional (3D) structure of the skin representing three layers,
namely, epidermis, dermis and hypodermis. The anatomy of skin constitutes of various important
structures like blood capillaries, sweat gland ducts and hair shafts that play major roles in

protecting the body against external environment.
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Figure 3: Sericin based matrices for wound healing applications: (I) Nanofibrous mats of
poly(vinylalcohol) (PVA) - Sericin blend (A-C) Images of electrospun mats showing nanofibers
of PVA, PVA + B. mori silk sericin (P + BMSS) and PVA + A. assama silk sericin (P + AASS)
and (D) Morphology of cells cultured on the mats depicting spread out morphology of cells on
the mats containing silk sericin; images reproduced with permission from [44] ©2018 Elsevier
B.V. (Il) Porous scaffolds made up of sericin extracted from hope cocoons demonstrating
successful co-culture of fibroblasts and keratinocytes to develop a bilayer skin tissue in
comparison to chitosan scaffolds used as control; images reproduced with permission from [46].
(1) 3D printed construct using silk sericin indicating the application of sericin in bio-ink for
bioprinting and wound healing applications, and (1) Morphology of the 3D printed constructs
developed using sericin-based bio-ink showing grid-line structures and porous architecture;

images reproduced with permission from [47] ©2018 American Chemical Society.
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Figure 4: Application of spider silk generating dermo- epldermal bilayer skin constructs m

oﬂ'

Schematic representation of the silkworm SF porous scaffold coated with recombinant spider silk
(FN-4RepCT) for the development of a bilayer graft by co-culturing human dermal fibroblast of
neonatal origin (HDFn), human dermal microvascular endothelial cells (HDMEC) and HaCaT
cells under air-liquid interface conditions; images reproduced with permission from [26] ©2018
American Chemical Society. (Il) Fabrication of a metallic frame made up of stainless steel
containing cross-weaved native spider dragline silk fibers to provide co-culture conditions under
air-liquid interface. The histological images represent successful generation of a bilayer model
using co-cultured cells on spider silk cross-weaved frame; images reproduced with permission
from [18]. (111) 3D bioprinting of cell-laden construct using 3 % hydrogel of recombinant spider
silk eADF4(C16); images reproduced with permission from [57] ©WILEY-VCH Verlag GmbH
& Co. KGaA, Weinheim. The hydrogel containing dermal fibroblast could be successfully 3D
printed to develop living constructs of cell-laden layers.
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Figure 5: (1) Role of SF in wound healing as examined by NF-kB signalling pathway, which

provided clues of the role of SF in enhancing the cell migration and cell proliferation. (I1) The
western blot analysis and other assays demonstrated expression of markers related to cell
proliferation like cyclin D1, fibronectin, vimentin, EGF, VEGF, TGF, IL-10, and IL-1B in the
fibroblasts cells treated with SF solution towards accelerated wound healing. The scratch assay
confirmed the role of silk in cell migration through various types of transfected cells using small
interfering RNA (siRNA) validating the role of silk in wound healing through NF-«B signalling
pathway; images reproduced with permission from [24] ©2017 Acta Materialia Inc. Published by
Elsevier Ltd.
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Figure 6: () Field emission scanning electron microscopy images of electrospun silk-PVA
composite mats representing morphology of nanofibres of various blends: PVA + B. mori SF
(PVABM), PVA + A. assama SF (PVAAA) and PVA + P. ricini SF (PVAPR); images
reproduced with permission from [30] ©2017 John Wiley and Sons. (1) (a) Scanning electron
microscopy images of (A) porous siik scaffolds and silk-keratin composite scaffolds: Silk fibroin
freeze-dried (SFFD), silk fibroin freeze gelled (SFFG) and silk fibroin—keratin blended scaffolds
(SFKR); (b) The porous architecture of the fabricated scaffolds remained intact after culture of
cells for 14 days as depicted by the images of immunostained sections, which demonstrate
staining of Coliagen type | homogenously distributed throughout the scaffolds, images
reproduced with permission from [123] ©2014 Oxford University Press. (111) 3D printed skin
graft using silk-gelatin bioink representing the design strategy, Computer-aided design (CAD)
model, detailed layer design, dimensions of the epidermal and dermal layers and macroscopic
view of the 3D printed construct; images reproduced with permission from [118] ©2019 Elsevier
B.V.
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Figure 7: (I) Schematic representation of the fabrication process of a viable full-thickness tri-

Immune/Mypodermis

Neural gelHypodermis  Immuna/Hypodearmis

layer immuno-competent skin equivalent containing nervous system components. The composite
human skin equivalent consisted of hypodermis, dermis, and epidermis by using silk sponges and
blend of silk-collagen hydrogel; images reproduced with permission [131] ©2018 Elsevier Ltd.
(11) Immunostaining of developed human skin equivalent confirming the specific markers of
neural (TUJ1 and DiD) and immune cells (CD68). The hypodermis consisted of macrophages,
and the dermal layer consisted of neural cells [131]. (I1I) Immunohistochemistry of the
developed skin equivalent indicating various markers of epidermal, dermal and hypodermal
layers in the tri-layer skin graft: Keratin 10 (K10) — keratinocytes, Vimentin (VIM) — fibroblasts,
ADIPO - adipocyte, TUJ1 and DiD — hiNSCs, CD68 - macrophage and DAPI — nuclei; images
reproduced with permission [25] ©WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Figure 8: (I) Functionalization of silk nanofibrous mat with EGF showing (A,B) schematic
images of analysing the healing efficacy of EGF-loaded silk matrix under in vitro skin model.
Histological images of the in vitro wound model representing extent of re-epithelialization after
48 h when treated with (C) silk mat without EGF and (D) silk mat with EGF. The functionalized
bioactive silk mat demonstrated complete epithelialization of the wound in comparison to the
non-functionalized silk mat; images reproduced with permission from [109] ©2009 Acta
Materialia Inc. Published by Elsevier Ltd. (II) Functionalized 4RepCT spider silk containing

-|-3Aha

fluorophore (4RepC ) and efficacy of antibiotic-Levofloxacin (Lev)-loaded spider silk fiber

against microbial culture; images reproduced with permission from [203] ©WILEY-VCH Verlag
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GmbH & Co. KGaA, Weinheim. (I11) The schematic design depicts a fabrication strategy of
cationized BmSF scaffold with PEI/pDNA complexes and grafting location for gene delivery and

wound healing applications; images reproduced with permission from [204].
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Figure 9: Wound healing efficacy of silk-based matrices under in vivo studies: (I) Animal study
of SERI scaffold using dorsal skinfold chamber (DSC) mouse model to examine the integration
of SERI surgical scaffold and healing efficiency. The haematoxylin and eosin (HE)-stained
tissue section and gross wound images revealed scaffold integration post-implantation; images
reproduced with permission from [14]© 2016 British Association of Plastic, Reconstructive and
Aesthetic Surgeons. Published by Elsevier Ltd. (1) Histology images of A. assama silk fibroin
(AaSF scaffolds) implanted on the wounds in rat showing integration of scaffolds with the host
tissue day 7 post implantation. The magnified images represent the infiltration of cells in the
microporous structures of the scaffolds (S) showing an early recruitment of cells and

development of granulation tissue (G) at the wounded site; images reproduced with permission
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from [68] ©2018 American Chemical Society. (I11) Wound healing efficacy of silk-based
hydrogel (SF) comparable to collagen (Col) gel showing (a) vascularization potential, (b)
migration of cells using agarose drop assay as depicted by the cells migrating from agarose gel
towards the gel and (c) re-epithelialization potential of the silk-based hydrogel as shown by the
suprabasal expression of cytokeratin 10 (CK10) and basal expression of cytokeratin 14 (CK14);
images reproduced with permission from [22] ©2018 John Wiley and Sons.
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Figure 10: Pre-clinical and clinical studies using B. mori silk fibroin thin film representing better
healing efficacy of silk film in comparison to polyurethane wound dressing - Suprathel, silk-
silicone composite dressing - Sidaiyi, and blank control under (1) rabbit model, (II) porcine
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model and (I11) clinical study performed on human skin donor site wounds as shown by the
macroscopic wound images; reproduced with permission from [8] ©WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim.

Table 1: List of silk-based composite matrices and design of the constructs.

Material format Composition References
3D Porous Scaffolds Silk Fibroin + Keratin [123]
Silk  Fibroin__+ Chondroitin [161]
Sulfate + Hyaluronic acid
Silk Fibroin + Elastin [134]
Silk Fibroin + Alginate [133]
Silk Fibroin + Citrus Pectin [162]
Silk Fibroin + poly(ethylene [163]
glycol) (PEG)
Silk Fibroin + Recombinant [26]
Spider Silk Fusion Proteins
Silk Fibroin + Hyaluronic acid + [164]
Sodium Alginate
Silk Sericin + Gelatin [87]
Silk Sericin + Chitosan [155, 157]
Silk Sericin + PVA [165]
Silk-based Hydrogels Silk Fibroin + B-cyclodextrin + [166]
polyethyleneimine
Silk Fibroin + Calcium Alginate [167]

+ Carboxymethyl Cellulose
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Silk Fibroin + Collagen [131]
Silk Fibroin + Platelet Gel [168]
B. mori SF + A. assama SF [22]
Silk Sericin + PVA [169, 170]
Silk Sericin + Carboxymethyl 158
Chitosan + Gelatin [158]
Silk Sericin + Agarose [171]
Silk Sericin + Polyacrylamide [159]
Silk Sericin + Carboxymethyl [172]
Cellulose
Silk-based Films / Thin Silk Fibroin + Chitosan [173]
Membrane
Silk Fibroin + Aloe vera gel [174]
Silk Sericin + Collagen [154]
Silk Sericin + Agar [175]
Nanofibrous matrices Silk Fibroin + [176]
poly(caprolactone) (PCL) +
Hyaluronic Acid [135]
Silk Fibroin + Chitosan
[177]
Silk Fibroin + Collagen
[178]
Silk Fibroin + PCL
[30]
Silk Fibroin + PVA
[179]
Silk Fibroin + Aloe vera
[44, 180]
Silk Sericin + PVA
[156]
Silk Sericin + PLCL
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Silk Sericin + Hyaluronan + [181]
Chondroitin Sulfate + Cationic
Gelatin
Silk - decellularized ECM Silk Fibroin + Human amniotic [182]
Composites membrane
Silk Fibroin + Goat’s Dermal [183]
Matrix
Silk Fibroin + Duck’s Feet [184]
Collagen
185
Silk Fibroin + Human Placental [185]
derived ECM
3D Printed Constructs Gelatin-sulfonated Silk [186]
Silk Fibroin + Gelatin bioink [118]
Silk Sericin + GeIMA bioink [47]

Table 2: List of silk-based functionalized wound dressings loaded with bioactive

molecules/antibiotics/antimicrobial peptides/growth factors.

Material format Additional Component References
SF-based nanofibers Astragaloside IV [213]
Fenugreek [214]
Thyme  essential oil and
Doxycycline monohydrate [215]
Grape Seed Extract [216]
Human Platelet Lysate [217]

Vitamin E + Curcumin [218]
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Vitamin E [219]
Pantothenic acid (Vitamin Bs) [220]
Riboflavin (Vitamin By) [221]
Vitamin C [222]
223
Manuka Honey [223]
Antimicrobials - Silver Oxide
Nanoparticles, Cathelicidin [110, 224, 225]
Peptide (LL37), Silver
Sulfadiazine
[30, 109]
EGF, bFGF
Type | Collagen Peptides and [226]
Nitric Oxide Donor
Quinone-based
Chromenopyrazole Antioxidant [227]
Porous silk-based scaffold Curcumin [228]
Silver nanoparticles (AgNPs) [229]
Antibiotic  loaded  Gelatin [230]
Microsphere
VEGF165-Ang-1 [204]
coexpression plasmid DNA
Nuerotensin [231]
SF-based Hydrogel Platelet-Rich Plasma Exosomes [232]
Curcumin [233]
Liposomes with bFGF [234]
Polarized Hydroxyapatite [235]
GMSC-Derived Exosomes [236]
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SF-based thin films Antibacterial MoSe, nanosheet [237]
Strontium [238]
EGF and Silver sulfadizine [110]
Transgenic ~ Silkworm-based FGF-, EGF-, KGF-, PDGF- and [239]
Genetically Engineered Silk ~ VEGF
VEGF and RGD [240]
Platelet-Derived Growth  Factor [241]
(PDGF-BB) in Silk Cocoonis
FGF2 and TGF-B1 [242]
EGF [243]
acidic fibrobiast growth factor [244]
HGF [245]

Table 3: List of the published patents that highlight the application of silk-based materials and

uses thereof. Source: Data retrieved from Google patents (accessed 23.06.19).

S. Title Assignee Patent
No. Or Applicant number/Reference
1 Silk fibroin materials and Trustees of Tufts US20130158131A1
use thereof College and [259]
Massachusetts
Institute of
Technology
2 | Methods, compositions and  Entogenetics, Inc.,  \WO02009097540A1
systems for production of Charlotte [260]
recombinant spider silk
polypeptides
3 | A 3D bioprinted scar tissue  Indian Institute of  W02019106695 Al
model Technology, Delhi, [261]
New Delhi
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4 A personal care Unilever N. V. / WO02019101524A1
composition comprising Unilever PLC/ [262]
sericin Conopco, Inc.,
D/B/A Unilever
5 Topical silk compositions The regents of the ~ W02019040850Al
and methods of using University of [263]
Colorado and
University of
Central Florida
6 | Silk fibroin-based personal Trustees of Tufts US20150079012A1
care compositions College [264]
7 Chimeric spider silk and KRAIG US20130212718A1
uses thereof BIOCRAFT [265]
LABORATORIES
Inc.
8 Silk - based capsules Patheon Softgels US20160045443A1
Inc., High Point, NC [266]
9 | Stable silk protein fragment  Silk Therapeutics US9187538B2
compositions Inc., Nature Inc [267]
10 Implantable biomedical University of US8666471B2
devices on bioresorbable Illinois, [268]
substrates Northwestern
University,
University of
Pennsylvania and
Tufts University
11 Silk fibroin systems for Trustees of Tufts US20120052124A1
antibiotic delivery College [269]
12 Silk fibroin-based Trustees of Tufts US20130338632A1
microneedles and methods College [270]
of making the same
13 | Methods of producing and Trustees of Tufts US9925301B2
using silk microfibers College [271]
14 | Compositions comprising Sofregen Medical, US20180272030A1
low molecular weight silk Inc., Medford [272]
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15

16

17

18

19

20

21

22

23

24

25

fibroin fragments and
plasticizers

Cross linked silk -
hyaluronic acid
composition

Thin-layered, endovascular
silk-covered stent device
and method of manufacture
thereof

Silk fibroin hydrogels and
uses thereof

Method for making a
knitted mesh

Tissue-engineered silk
organs

Method for using a silk
derived bioresorbable
scaffold in breast
reconstruction

Implantable silk prosthetic
device and uses thereof

Method of forming an
implantable knitted fabric
comprising silk fibroin
fibers

Electrospun silk material
systems for wound healing

Silk based implantable
medical devices and
methods for determining
suitability for use in
humans

Silk fibroin and
polyethylene glycol-based
biomaterials

Allergan, Inc.,
Irvine, CA

Lifeshield Sciences
LLC

Allergan, Inc.,
Irvine, CA

Allergan, Inc.,
Irvine, CA

Trustees of Tufts
College

Allergan, Inc.,
Irvine, CA

Allergan, Inc.,
Irvine, CA

Allergan, Inc.,
Irvine, CA

Trustees of Tufts
College

Allergan, Inc.,
Irvine, CA

Trustees of Tufts
College

US20140315828A1
[273]

US20010053931A1
[274]

US8420077B2
[275]

US9078731B2
[276]

US9102916B2
[277]

US20140088700A1
[278]

US20140277000A1
[279]

US8628791B2
[280]

US8728498B2
[281]

US20130253646A1
[282]

US20130287742A1
[283]
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26 Methods for stepwise Trustees of Tufts US8354501B2
deposition of silk fibroin College [284]
coatings
27 Silk-based drug delivery Trustees of Tufts US8530625B2
system College and [285]
Eidgenossisches
Technische

Hochschule (The
Swiss Federal
Institute of
Technology)

28 | Bioengineered silk protein- Trustees of Tufts 1S20120171770A1

based nucleic acid delivery College [286]
systems
29 | Dermal fillers comprising Allergan, Inc., US8288347B2
silk fibroin hydrogels and Irvine, CA [287]
uses thereof
30 Drug delivery platforms Allergan, Inc., US20110052695A1
comprising silk fibroin Irvine, CA [288]

hydrogels and uses thereof




